On convergence of a q-random coordinate constrained algorithm for non-convex problems

被引:0
|
作者
Ghaffari-Hadigheh, A. [1 ]
Sinjorgo, L. [2 ]
Sotirov, R. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Tabriz, Iran
[2] Tilburg Univ, EOR Dept, Tilburg, Netherlands
关键词
Random coordinate descent algorithm; Convergence analysis; Densest k-subgraph problem; Eigenvalue complementarity problem; DESCENT ALGORITHMS; SIMPLEX;
D O I
10.1007/s10898-024-01429-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a random coordinate descent algorithm for optimizing a non-convex objective function subject to one linear constraint and simple bounds on the variables. Although it is common use to update only two random coordinates simultaneously in each iteration of a coordinate descent algorithm, our algorithm allows updating arbitrary number of coordinates. We provide a proof of convergence of the algorithm. The convergence rate of the algorithm improves when we update more coordinates per iteration. Numerical experiments on large scale instances of different optimization problems show the benefit of updating many coordinates simultaneously.
引用
收藏
页码:843 / 868
页数:26
相关论文
共 50 条
  • [31] Lossless convexification of non-convex optimal control problems for state constrained linear systems
    Harris, Matthew W.
    Acikmese, Behcet
    AUTOMATICA, 2014, 50 (09) : 2304 - 2311
  • [32] ON THE CONVERGENCE OF GRADIENT PROJECTION METHODS FOR NON-CONVEX OPTIMAL CONTROL PROBLEMS WITH AFFINE SYSTEM
    Djendel, Khelifa
    Li, Xiaobing
    Zhang, Haisen
    Zhou, Zhongcheng
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (01) : 439 - 452
  • [33] Stochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization
    Liu, An
    Lau, Vincent K. N.
    Kananian, Borna
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (16) : 4189 - 4203
  • [34] Convergence of a Multi-Agent Projected Stochastic Gradient Algorithm for Non-Convex Optimization
    Bianchi, Pascal
    Jakubowicz, Jeremie
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) : 391 - 405
  • [35] Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization
    Szilárd Csaba László
    Mathematical Programming, 2021, 190 : 285 - 329
  • [36] Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization
    Laszlo, Szilard Csaba
    MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 285 - 329
  • [37] Modified Artificial Bee Colony Algorithm for Non-Convex Economic Dispatch Problems
    Nagur, P. N.
    Raj, Shubham
    Jadhav, H. T.
    2012 INTERNATIONAL CONFERENCE ON GREEN TECHNOLOGIES (ICGT), 2012, : 258 - 262
  • [38] Deep Block Proximal Linearised Minimisation Algorithm for Non-convex Inverse Problems
    Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
    不详
    不详
    arXiv,
  • [39] DualBi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint
    Manieri, Lucrezia
    Falsone, Alessandro
    Prandini, Maria
    AUTOMATICA, 2025, 175
  • [40] Global convergence of a curvilinear search for non-convex optimization
    Bartholomew-Biggs, Michael
    Beddiaf, Salah
    Christianson, Bruce
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2025 - 2043