Predicting patent lawsuits with machine learning

被引:0
|
作者
Juranek, Steffen [1 ]
Otneim, Hakon [1 ]
机构
[1] NHH Norwegian Sch Econ, Helleveien 30, N-5045 Bergen, Norway
关键词
Patents; Litigation; Prediction; Machine learning; LITIGATION;
D O I
10.1016/j.irle.2024.106228
中图分类号
F [经济];
学科分类号
02 ;
摘要
We use machine learning methods to predict which patents end up in court using the population of US patents granted between 2002 and 2005. We show that patent characteristics have significant predictive power, particularly value indicators and patent-owner characteristics. Furthermore, we analyze the predictive performance concerning the number of observations used to train the model, which patent characteristics to use, and which predictive model to choose. We find that extending the set of patent characteristics has the biggest positive impact on predictive performance. The model choice matters as well. More sophisticated machine learning methods provide additional value relative to a simple logistic regression. This result highlights the existence of non-linearities among and interactions across the predictors. Our results provide practical advice to anyone building patent litigation models, e.g., for litigation insurance or patent management more generally.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Patent Portfolio Analysis of the Synergy between Machine Learning and Photonics
    Chang, Shu-Hao
    PHOTONICS, 2022, 9 (01)
  • [42] Machine learning and statistical models for analyzing multilevel patent data
    Sunyun Qi
    Yu Zhang
    Hua Gu
    Fei Zhu
    Meiying Gao
    Hongxiao Liang
    Qifeng Zhang
    Yanchao Gao
    Scientific Reports, 13
  • [43] Machine learning and statistical models for analyzing multilevel patent data
    Qi, Sunyun
    Zhang, Yu
    Gu, Hua
    Zhu, Fei
    Gao, Meiying
    Liang, Hongxiao
    Zhang, Qifeng
    Gao, Yanchao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] The proximity of ideas: An analysis of patent text using machine learning
    Feng, Sijie
    PLOS ONE, 2020, 15 (07):
  • [45] Using machine learning for predicting outcomes in ACLF
    Tonon, Marta
    Moreau, Richard
    LIVER INTERNATIONAL, 2022, 42 (11) : 2354 - 2355
  • [46] Machine learning approaches in predicting allosteric sites
    Nerin-Fonz, Francho
    Cournia, Zoe
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 85
  • [47] Machine learning model selection for predicting bathymetry
    Moran, Nicholas
    Stringer, Ben
    Lin, Bruce
    Hoque, Md Tamjidul
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2022, 185
  • [48] Predicting freshmen enrollment based on machine learning
    Lei Yang
    Li Feng
    Longqing Zhang
    Liwei Tian
    The Journal of Supercomputing, 2021, 77 : 11853 - 11865
  • [49] Machine learning algorithms for predicting scapular kinematics
    Nicholson, Kristen F.
    Richardson, R. Tyler
    van Roden, Elizabeth A. Rapp
    Quinton, R. Garry
    Anzilotti, Kert F.
    Richards, James G.
    MEDICAL ENGINEERING & PHYSICS, 2019, 65 : 39 - 45
  • [50] Predicting Software Defects with Explainable Machine Learning
    Santos, Geanderson
    Figueiredo, Eduardo
    Veloso, Adriano
    Viggiato, Markos
    Ziviani, Nivio
    PROCEEDINGS OF THE 19TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, SBOS 2020, 2020,