Remark on the Daugavet property for complex Banach spaces

被引:0
|
作者
Lee, Han Ju [1 ]
Tag, Hyung-Joon [1 ]
机构
[1] Dongguk Univ Seoul, Dept Math Educ, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Daugavet points; Delta-points; alternative convexity or smoothness; nonsquareness; polynomial Daugavet property; GEOMETRIC-PROPERTIES; INDEX;
D O I
10.1515/dema-2024-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the Daugavet property and the diametral diameter two properties (DD2Ps) in complex Banach spaces. The characterizations for both Daugavet and Delta \Delta -points are revisited in the context of complex Banach spaces. We also provide relationships between some variants of alternative convexity and smoothness, nonsquareness, and the Daugavet property. As a consequence, every strongly locally uniformly alternatively convex or smooth (sluacs) Banach space does not contain Delta \Delta -points from the fact that such spaces are locally uniformly nonsquare. We also study the convex diametral local diameter two property and the polynomial Daugavet property in the vector-valued function space A ( K , X ) A\left(K,X) . From an explicit computation of the polynomial Daugavetian index of A ( K , X ) A\left(K,X) , we show that the space A ( K , X ) A\left(K,X) has the polynomial Daugavet property if and only if either the base algebra A A or the range space X X has the polynomial Daugavet property. Consequently, we obtain that the polynomial Daugavet property, Daugavet property, DD2Ps, and property ( D {\mathcal{D}} ) are equivalent for infinite-dimensional uniform algebras.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) : 855 - 873
  • [2] Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Sirotkin, GG
    Werner, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1291 - 1294
  • [3] Banach spaces with the Daugavet property, and the centralizer
    Guerrero, Julio Becerra
    Rodriguez-Palacios, Angel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) : 2294 - 2302
  • [4] DAUGAVET PROPERTY AND SEPARABILITY IN BANACH SPACES
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 68 - 84
  • [5] L-orthogonality, octahedrality and Daugavet property in Banach spaces
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. ADVANCES IN MATHEMATICS, 2021, 383
  • [6] Daugavet property in projective symmetric tensor products of Banach spaces
    Martin, Miguel
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [7] Daugavet property in projective symmetric tensor products of Banach spaces
    Miguel Martín
    Abraham Rueda Zoca
    [J]. Banach Journal of Mathematical Analysis, 2022, 16
  • [8] Narrow operators and rich subspaces of Banach spaces with the Daugavet property
    Kadets, VM
    Shvidkoy, RV
    Werner, D
    [J]. STUDIA MATHEMATICA, 2001, 147 (03) : 269 - 298
  • [9] THE DIAMETRAL STRONG DIAMETER 2 PROPERTY OF BANACH SPACES IS THE SAME AS THE DAUGAVET PROPERTY
    Kadets, Vladimir
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2579 - 2582
  • [10] Anti-N-order polynomial Daugavet property on Banach spaces
    Emenyu, John
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 1097 - 1105