Functional Train Algebras of Rank ≤ 3

被引:0
|
作者
Bayara, Joseph [1 ]
Coulibaly, Siaka [1 ]
机构
[1] Nazi Boni Univ, Dept Math & Comp Sci, Bobo Dioulasso, Burkina Faso
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 03期
关键词
baric algebra; train algebra; idempotent element; nilpotent element; Peirce decomposition; VARIETIES;
D O I
10.37256/cm.5320244575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that every baric algebra satisfying a functional train identity of rank <= 3 and admitting an idempotent is a special train algebra. The functional train equation of train algebras of rank 3 is given. Some examples are also given.
引用
收藏
页码:2668 / 2679
页数:12
相关论文
共 50 条
  • [1] ON TRAIN ALGEBRAS OF RANK 3
    COSTA, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 148 : 1 - 12
  • [2] On Bernstein and train algebras of rank 3
    Guzzo, H
    Vicente, P
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) : 2021 - 2032
  • [3] Representations on train algebras of rank 3
    Labra, A
    Reyes, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 : 91 - 97
  • [4] Shape identities in train algebras of rank 3
    Costa R.
    Guzzo H.
    Jr.
    Vicente P.
    Results in Mathematics, 1999, 35 (1-2) : 32 - 43
  • [5] Train algebras of rank 3 with finiteness conditions
    Zitan, Fouad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 1081 - 1087
  • [6] On train algebras of rank 4
    LopezSanchez, J
    Rodriguez, ES
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) : 4439 - 4445
  • [7] Axial view on pseudo-composition algebras and train algebras of rank 3
    Gorshkov, Ilya
    Mamontov, Andrey
    Staroletov, Alexey
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (06) : 937 - 960
  • [8] On plenary train algebras of rank 4
    Labra, Alicia
    Suazo, Avelino
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (09) : 2744 - 2752
  • [9] Plenary train algebras of rank m and backcrossing identity
    Bayara, Joseph
    Coulibaly, Siaka
    JOURNAL OF ALGEBRA, 2024, 646 : 433 - 455
  • [10] Representations of power-associative train algebras of rank 4
    Lucas Rodrigues, R.
    Quintero Vanegas, E. O.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (12) : 5392 - 5401