Functional Train Algebras of Rank ≤ 3

被引:0
|
作者
Bayara, Joseph [1 ]
Coulibaly, Siaka [1 ]
机构
[1] Nazi Boni Univ, Dept Math & Comp Sci, Bobo Dioulasso, Burkina Faso
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 03期
关键词
baric algebra; train algebra; idempotent element; nilpotent element; Peirce decomposition; VARIETIES;
D O I
10.37256/cm.5320244575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that every baric algebra satisfying a functional train identity of rank <= 3 and admitting an idempotent is a special train algebra. The functional train equation of train algebras of rank 3 is given. Some examples are also given.
引用
收藏
页码:2668 / 2679
页数:12
相关论文
共 50 条
  • [21] Bessel systems for Jordan algebras of rank 2 and 3
    Mahmoud, NH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (02) : 372 - 390
  • [22] Classification of some vertex operator algebras of rank 3
    Franc, Cameron
    Mason, Geoffrey
    ALGEBRA & NUMBER THEORY, 2020, 14 (06) : 1613 - 1668
  • [23] On generalized Melvin solutions for Lie algebras of rank 3
    Bolokhov, S. V.
    Ivashchuk, V. D.
    4TH INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS (ICPPA-2018), 2019, 1390
  • [24] Twist of Lie algebras by a rank-3 subalgebra
    Aizawa, N
    PHYSICS OF ATOMIC NUCLEI, 2001, 64 (12) : 2069 - 2073
  • [25] The Poincare algebra in rank 3 simple Lie algebras
    Douglas, Andrew
    de Guise, Hubert
    Repka, Joe
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [26] WEIGHT DIAGRAMS FOR LIE-ALGEBRAS OF RANK 3
    MCCONNELL, J
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1973, 73 (15) : 195 - 212
  • [27] On generalized Melvin solutions for Lie algebras of rank 3
    Bolokhov, S. V.
    Ivashchuk, V. D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (07)
  • [28] NOTE ON TRAIN ALGEBRAS
    ABRAHAM, VM
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1976, 20 (MAR) : 53 - 58
  • [29] On algebras of rank three
    Walcher, S
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) : 3401 - 3438
  • [30] Power-associative algebras that are train algebras
    Bayara, Joseph
    Conseibo, Andre
    Ouattara, Moussa
    Zitan, Fouad
    JOURNAL OF ALGEBRA, 2010, 324 (06) : 1159 - 1176