Train algebras of rank 3 with finiteness conditions

被引:3
|
作者
Zitan, Fouad [1 ]
机构
[1] Univ Abdelmalek Essaadi, Fac Sci, Dept Math & Informat, Mhannech, Tetouan, Morocco
关键词
Artinian algebra; Bernstein algebra; Finitely generated algebra; Jordan algebra; Locally nilpotent algebra; Noetherian algebra; Train algebra; BERNSTEIN ALGEBRAS; NILPOTENCY;
D O I
10.1016/j.laa.2009.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that a train algebra of rank 3 which is finitely generated, Noetherian or Artinian is finite-dimensional. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1081 / 1087
页数:7
相关论文
共 50 条
  • [1] ON TRAIN ALGEBRAS OF RANK 3
    COSTA, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 148 : 1 - 12
  • [2] Functional Train Algebras of Rank ≤ 3
    Bayara, Joseph
    Coulibaly, Siaka
    CONTEMPORARY MATHEMATICS, 2024, 5 (03): : 2668 - 2679
  • [3] On Bernstein and train algebras of rank 3
    Guzzo, H
    Vicente, P
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (07) : 2021 - 2032
  • [4] Representations on train algebras of rank 3
    Labra, A
    Reyes, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 : 91 - 97
  • [5] Shape identities in train algebras of rank 3
    Costa R.
    Guzzo H.
    Jr.
    Vicente P.
    Results in Mathematics, 1999, 35 (1-2) : 32 - 43
  • [6] On train algebras of rank 4
    LopezSanchez, J
    Rodriguez, ES
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) : 4439 - 4445
  • [7] Semiprime algebras with finiteness conditions
    Lee, TK
    Wong, TL
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (04) : 1823 - 1835
  • [8] Axial view on pseudo-composition algebras and train algebras of rank 3
    Gorshkov, Ilya
    Mamontov, Andrey
    Staroletov, Alexey
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (06) : 937 - 960
  • [9] 3-graded Lie algebras with Jordan finiteness conditions
    López, AF
    García, E
    Lozano, MG
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (10) : 3807 - 3824
  • [10] On plenary train algebras of rank 4
    Labra, Alicia
    Suazo, Avelino
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (09) : 2744 - 2752