Low Probability of Intercept Radar Signal Recognition Based on Semi-Supervised Support Vector Machine

被引:0
|
作者
Xu, Fuhua [1 ]
Hu, Haoning [1 ]
Mu, Jiaqing [1 ]
Wang, Xiaofeng [1 ]
Zhou, Fang [1 ]
Quan, Daying [1 ]
机构
[1] China Jiliang Univ, Sch Informat Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
radar signal recognition; multi-synchrosqueezing transform; DWT; semi-supervised learning; WAVE-FORM RECOGNITION;
D O I
10.3390/electronics13163248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low probability of intercept (LPI) radar signal recognition under low signal-to-noise ratio (SNR) is a challenging task within electronic reconnaissance systems, particularly when faced with scarce labeled data and limited resources. In this paper, we introduce an LPI radar signal recognition method based on a semi-supervised Support Vector Machine (SVM). First, we utilize the Multi-Synchrosqueezing Transform (MSST) to obtain the time-frequency images of radar signals and undergo the necessary preprocessing operations. Then, the image features are extracted via Discrete Wavelet Transform (DWT), and the feature dimension is reduced by the principal component analysis (PCA). Finally, the dimensionality reduction features are input into the semi-supervised SVM to complete the classification and recognition of LPI radar signals. The experimental results demonstrate that the proposed method achieves high recognition accuracy at low SNR. When the SNR is -6 dB, its recognition accuracy reaches almost 100%.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Semi-supervised classification method for remote sensing images based on support vector machine
    Qi, H
    Yang, JG
    Ding, LX
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 2357 - 2361
  • [42] Semi-supervised sparse least squares support vector machine based on Mahalanobis distance
    Li Cui
    Yingqing Xia
    Applied Intelligence, 2022, 52 : 14294 - 14312
  • [43] Semi-supervised sparse least squares support vector machine based on Mahalanobis distance
    Cui, Li
    Xia, Yingqing
    APPLIED INTELLIGENCE, 2022, 52 (12) : 14294 - 14312
  • [44] New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine
    Gu, Bin
    Yuan, Xiao-Tong
    Chen, Songcan
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1475 - 1484
  • [45] A novel semi-supervised support vector machine with asymmetric squared loss
    Huimin Pei
    Qiang Lin
    Liran Yang
    Ping Zhong
    Advances in Data Analysis and Classification, 2021, 15 : 159 - 191
  • [46] Laplacian smooth twin support vector machine for semi-supervised classification
    Wei-Jie Chen
    Yuan-Hai Shao
    Ning Hong
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 459 - 468
  • [47] A Cost-Sensitive Semi-Supervised Support Vector Machine Algorithm
    Han, Min
    Wang, Zhao
    Sun, Zhaoxu
    Xu, Yongli
    Jiang, Nan
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 238 - 244
  • [48] Quintic spline smooth semi-supervised support vector classification machine
    Xiaodan Zhang
    Jinggai Ma
    Aihua Li
    Ang Li
    Journal of Systems Engineering and Electronics, 2015, 26 (03) : 626 - 632
  • [49] Weighted Least Squares Support Vector Machine for Semi-supervised Classification
    Liu, Zhanwei
    Liu, Houquan
    Zhao, Zhikai
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 103 (01) : 797 - 808
  • [50] A novel semi-supervised support vector machine with asymmetric squared loss
    Pei, Huimin
    Lin, Qiang
    Yang, Liran
    Zhong, Ping
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (01) : 159 - 191