Semi-supervised classification method for remote sensing images based on support vector machine

被引:0
|
作者
Qi, H [1 ]
Yang, JG [1 ]
Ding, LX [1 ]
机构
[1] Zhejiang Forestry Coll, Sch Informat Engn, Hangzhou 311300, Peoples R China
关键词
semi-supervised classification; support vector machine; fuzzy C-means clustering; remote sensing image;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical Learning Theory-based Support Vector Machine (SVM), which is a supervised learning mechanism, can get good class rate in remote sensing image classification. But manual obtaining of labeled training samples is a much time-consuming work because of the much great class number of remote sensing image. In addition, there are some subjective factors in manual job by different operators. In order to overcome these shortcomings, a semi-supervised approach has been developed and implemented. The training samples are labeled automatically with fuzzy C-means clustering algorithm. Only the initial clustering centroid for each class is chosen manually. Using these automatically labeled samples, multi-class SVM classifier is trained for remote sensing images classfication. The results of the experiment show that the method does upgrade the classfication efficiency greatly with practicable class rate.
引用
收藏
页码:2357 / 2361
页数:5
相关论文
共 50 条
  • [1] A New Classification Method Based on Semi-supervised Support Vector Machine
    Jiang, Weijin
    Yao Lina
    Jiang Xinjun
    Xu Yuhui
    HUMAN CENTERED COMPUTING, HCC 2014, 2015, 8944 : 633 - 645
  • [2] Semi-supervised classification method for hyperspectral remote sensing images
    Gomez-Chova, L
    Calpe, J
    Camps-Valls, G
    Martín, JD
    Soria, E
    Vila, J
    Alonso-Chorda, L
    Moreno, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1776 - 1778
  • [3] An Internet Traffic Classification Method Based on Semi-Supervised Support Vector Machine
    Li, Xiang
    Qi, Feng
    Xu, Dan
    Qiu, Xue-song
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [4] Semi-supervised Scene Classification of Remote Sensing Images Based on GAN
    Xia Ying
    Li Junyao
    Guo Dongen
    ACTA PHOTONICA SINICA, 2022, 51 (03)
  • [5] Advances in semi-supervised classification of hyperspectral remote sensing images
    Yang X.
    Fang L.
    Yue J.
    National Remote Sensing Bulletin, 2024, 28 (01) : 19 - 41
  • [6] Manifold proximal support vector machine for semi-supervised classification
    Wei-Jie Chen
    Yuan-Hai Shao
    Deng-Ke Xu
    Yong-Feng Fu
    Applied Intelligence, 2014, 40 : 623 - 638
  • [7] Manifold proximal support vector machine for semi-supervised classification
    Chen, Wei-Jie
    Shao, Yuan-Hai
    Xu, Deng-Ke
    Fu, Yong-Feng
    APPLIED INTELLIGENCE, 2014, 40 (04) : 623 - 638
  • [8] A new proximal support vector machine for semi-supervised classification
    Sun, Li
    Jing, Ling
    Xia, Xiaodong
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1076 - 1082
  • [9] Laplacian twin support vector machine for semi-supervised classification
    Qi, Zhiquan
    Tian, Yingjie
    Shi, Yong
    NEURAL NETWORKS, 2012, 35 : 46 - 53
  • [10] A Novel Classification Algorithm Based on Incremental Semi-Supervised Support Vector Machine
    Gao, Fei
    Mei, Jingyuan
    Sun, Jinping
    Wang, Jun
    Yang, Erfu
    Hussain, Amir
    PLOS ONE, 2015, 10 (08):