Semi-supervised classification method for remote sensing images based on support vector machine

被引:0
|
作者
Qi, H [1 ]
Yang, JG [1 ]
Ding, LX [1 ]
机构
[1] Zhejiang Forestry Coll, Sch Informat Engn, Hangzhou 311300, Peoples R China
关键词
semi-supervised classification; support vector machine; fuzzy C-means clustering; remote sensing image;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical Learning Theory-based Support Vector Machine (SVM), which is a supervised learning mechanism, can get good class rate in remote sensing image classification. But manual obtaining of labeled training samples is a much time-consuming work because of the much great class number of remote sensing image. In addition, there are some subjective factors in manual job by different operators. In order to overcome these shortcomings, a semi-supervised approach has been developed and implemented. The training samples are labeled automatically with fuzzy C-means clustering algorithm. Only the initial clustering centroid for each class is chosen manually. Using these automatically labeled samples, multi-class SVM classifier is trained for remote sensing images classfication. The results of the experiment show that the method does upgrade the classfication efficiency greatly with practicable class rate.
引用
收藏
页码:2357 / 2361
页数:5
相关论文
共 50 条
  • [21] Online semi-supervised support vector machine
    Liu, Ying
    Xu, Zhen
    Li, Chunguang
    INFORMATION SCIENCES, 2018, 439 : 125 - 141
  • [22] An overview on semi-supervised support vector machine
    Ding, Shifei
    Zhu, Zhibin
    Zhang, Xiekai
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (05): : 969 - 978
  • [23] Semi-supervised learning with constrained virtual support vector machines for classification of remote sensing image data
    Geiss, Christian
    Pelizari, Patrick Aravena
    Tuncbilek, Ozan
    Taubenboeck, Hannes
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 125
  • [24] An overview on semi-supervised support vector machine
    Shifei Ding
    Zhibin Zhu
    Xiekai Zhang
    Neural Computing and Applications, 2017, 28 : 969 - 978
  • [25] GSCCTL: a general semi-supervised scene classification method for remote sensing images based on clustering and transfer learning
    Song, Haifeng
    Yang, Weiwei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5976 - 6000
  • [26] Active Versus Semi-supervised Learning Paradigm for the Classification of Remote Sensing Images
    Persello, Claudio
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [27] Co-training with Clustering for the Semi-supervised Classification of Remote Sensing Images
    Aydav, Prem Shankar Singh
    Minz, Sonjharia
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 2, 2016, 380 : 659 - 667
  • [28] A Semi-supervised Support Vector Machine Classification Method based on Parameter Optimization for a Motor Imagery based BCI System
    Liu, Jing
    Zhang, Li
    Li, Changsheng
    Xiao, Zhihong
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 457 - 462
  • [29] A proximal quadratic surface support vector machine for semi-supervised binary classification
    Xin Yan
    Yanqin Bai
    Shu-Cherng Fang
    Jian Luo
    Soft Computing, 2018, 22 : 6905 - 6919
  • [30] A proximal quadratic surface support vector machine for semi-supervised binary classification
    Yan, Xin
    Bai, Yanqin
    Fang, Shu-Cherng
    Luo, Jian
    SOFT COMPUTING, 2018, 22 (20) : 6905 - 6919