Process parameters optimization of EDM for hybrid aluminum MMC using hybrid optimization technique

被引:5
|
作者
Mohankumar, Velusamy [1 ]
Kumarasamy, Soorya Prakash [2 ]
Palanisamy, Sivasubramanian [3 ]
Mani, Ajith Kuriakose [4 ]
Durairaj, Thresh Kumar [3 ]
Sillanpaa, Mika [5 ,6 ,7 ,8 ,9 ,10 ,11 ]
Al-Farraj, Saleh A. [12 ]
机构
[1] Akshaya Coll Engn & Technol, Dept Mechatron Engn, Coimbatore 642109, Tamil Nadu, India
[2] Anna Univ Reg Campus, Dept Mech Engn, Coimbatore 641046, Tamil Nadu, India
[3] PTR Coll Engn & Technol, Dept Mech Engn, Madurai Tirumangalam Rd, Madurai 625008, Tamil Nadu, India
[4] St GITS Coll Engn, Dept Mech Engn, Kottukulam Hills, Kottayam 686532, Kerala, India
[5] Gulf Univ Sci & Technol, Funct Mat Grp, Mubarak Al Abdullah 32093, Kuwait
[6] Lebanese Amer Univ, Adnan Kassar Sch Business, Beirut, Lebanon
[7] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[8] Lovely Profess Univ, Div Res & Dev, Phagwara 144411, Punjab, India
[9] Univ Johannesburg, Sch Min Met & Chem Engn, Dept Chem Engn, POB 17011, ZA-2028 Doornfontein, South Africa
[10] Chandigarh Univ, Univ Ctr Res & Dev, Dept Civil Engn, Mohali, Punjab, India
[11] UPES, Sch Adv Engn, Sustainabil Cluster, Dehra Dun 248007, Uttarakhand, India
[12] King Saud Univ, Coll Sci, Dept Zool, Riyadh, Saudi Arabia
关键词
Al7075; SiC; B4C; Taguchi method; Response surface methodology (RSM); TOPSIS; GRA; ANOVA; EWM; METAL-MATRIX COMPOSITE; MACHINING PROCESS PARAMETERS; GREY RELATIONAL ANALYSIS; SIC PARTICLE-SIZE; MECHANICAL-PROPERTIES; MULTIRESPONSE OPTIMIZATION; WEAR BEHAVIOR; TOPSIS METHOD; MULTIOBJECTIVE OPTIMIZATION; VOLUME FRACTION;
D O I
10.1016/j.heliyon.2024.e35555
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores how machining parameters affect Surface Roughness (SR), Tool Wear Rate (TWR), and Material Removal Rate (MRR) during Electrical Discharge Machining (EDM) of a hybrid aluminum metal matrix composite (AMMC). The composite includes 6 % Silicon carbide (SiC) and 6 % Boron carbide (B4C) in an Aluminum 7075 (Al7075) matrix. A combined optimization approach was used to balance these factors, evaluating Pulse ON time, Current, Voltage, and Pulse OFF time. Response Surface Methodology (RSM) optimized single responses, while multi-response optimization employed a hybrid method combining the Entropy Weight Method (EWM), Taguchi approach, TOPSIS, and GRA. Analysis of Variance (ANOVA) assessed parameter significance, revealing substantial impacts on SR, MRR, and EWR. Based on TOPSIS and GRA, optimized parameters achieved a desirable balance: high MRR (0.4172, 0.5240 mm3/min), minimal EWR (0.0068, 0.0103 mm3/min), and acceptable SR (10.3877, 9.1924 mu m) based on EWM-weighted priorities. Confirmation experiments validated a 15 % improvement in the closeness coefficient, and a 16 % improvement in the Grey relational grade, which considers combined SR, MRR, and EWR performance. Scanning Electron Microscope (SEM) analysis of surfaces machined with optimal parameters showed minimal debris, cracks, and no recast layer, indicating high surface integrity. This research enhances EDM optimization for AMMC, achieving efficiency in machining, minimizing tool wear, and meeting surface quality requirements.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Optimization of EDM Process Parameters for Machining of Steel
    Mohanty, Rajesh Kumar
    Saini, Surendra Kumar
    RECENT ADVANCES IN SMART MANUFACTURING AND MATERIALS, ICEM 2020, 2021, : 509 - 514
  • [32] Statistical optimization of EDM parameters on machining of aluminum Hybrid Metal Matrix composite by applying Taguchi based Grey analysis
    Gopalakannan, S.
    Senthilvelan, T.
    Ranganathan, S.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2013, 72 (06): : 358 - 365
  • [33] Optimization of metal-forming process via a hybrid intelligent optimization technique
    Li, D. Y.
    Peng, Y. H.
    Yin, J. L.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2007, 34 (03) : 229 - 241
  • [34] Optimization of metal-forming process via a hybrid intelligent optimization technique
    D. Y. Li
    Y. H. Peng
    J. L. Yin
    Structural and Multidisciplinary Optimization, 2007, 34 : 229 - 241
  • [35] Multi-objective optimization of powder-mixed EDM parameters using hybrid Grey-ANFIS artificial intelligence technique
    Jagdeep Singh
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2022, 16 : 1533 - 1549
  • [36] Multi-objective optimization of powder-mixed EDM parameters using hybrid Grey-ANFIS artificial intelligence technique
    Singh, Jagdeep
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2022, 16 (04): : 1533 - 1549
  • [37] Optimization of machining parameters in rotary EDM process by using the Taguchi method
    Aliakbari, E.
    Baseri, H.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 62 (9-12): : 1041 - 1053
  • [38] Optimization of Dry EDM Process Parameters Using Grey Relational Analysis
    N. Pragadish
    M. Pradeep Kumar
    Arabian Journal for Science and Engineering, 2016, 41 : 4383 - 4390
  • [39] Optimization of Dry EDM Process Parameters Using Grey Relational Analysis
    Pragadish, N.
    Kumar, M. Pradeep
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (11) : 4383 - 4390
  • [40] Optimization of machining parameters in rotary EDM process by using the Taguchi method
    E. Aliakbari
    H. Baseri
    The International Journal of Advanced Manufacturing Technology, 2012, 62 : 1041 - 1053