Process parameters optimization of EDM for hybrid aluminum MMC using hybrid optimization technique

被引:5
|
作者
Mohankumar, Velusamy [1 ]
Kumarasamy, Soorya Prakash [2 ]
Palanisamy, Sivasubramanian [3 ]
Mani, Ajith Kuriakose [4 ]
Durairaj, Thresh Kumar [3 ]
Sillanpaa, Mika [5 ,6 ,7 ,8 ,9 ,10 ,11 ]
Al-Farraj, Saleh A. [12 ]
机构
[1] Akshaya Coll Engn & Technol, Dept Mechatron Engn, Coimbatore 642109, Tamil Nadu, India
[2] Anna Univ Reg Campus, Dept Mech Engn, Coimbatore 641046, Tamil Nadu, India
[3] PTR Coll Engn & Technol, Dept Mech Engn, Madurai Tirumangalam Rd, Madurai 625008, Tamil Nadu, India
[4] St GITS Coll Engn, Dept Mech Engn, Kottukulam Hills, Kottayam 686532, Kerala, India
[5] Gulf Univ Sci & Technol, Funct Mat Grp, Mubarak Al Abdullah 32093, Kuwait
[6] Lebanese Amer Univ, Adnan Kassar Sch Business, Beirut, Lebanon
[7] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
[8] Lovely Profess Univ, Div Res & Dev, Phagwara 144411, Punjab, India
[9] Univ Johannesburg, Sch Min Met & Chem Engn, Dept Chem Engn, POB 17011, ZA-2028 Doornfontein, South Africa
[10] Chandigarh Univ, Univ Ctr Res & Dev, Dept Civil Engn, Mohali, Punjab, India
[11] UPES, Sch Adv Engn, Sustainabil Cluster, Dehra Dun 248007, Uttarakhand, India
[12] King Saud Univ, Coll Sci, Dept Zool, Riyadh, Saudi Arabia
关键词
Al7075; SiC; B4C; Taguchi method; Response surface methodology (RSM); TOPSIS; GRA; ANOVA; EWM; METAL-MATRIX COMPOSITE; MACHINING PROCESS PARAMETERS; GREY RELATIONAL ANALYSIS; SIC PARTICLE-SIZE; MECHANICAL-PROPERTIES; MULTIRESPONSE OPTIMIZATION; WEAR BEHAVIOR; TOPSIS METHOD; MULTIOBJECTIVE OPTIMIZATION; VOLUME FRACTION;
D O I
10.1016/j.heliyon.2024.e35555
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explores how machining parameters affect Surface Roughness (SR), Tool Wear Rate (TWR), and Material Removal Rate (MRR) during Electrical Discharge Machining (EDM) of a hybrid aluminum metal matrix composite (AMMC). The composite includes 6 % Silicon carbide (SiC) and 6 % Boron carbide (B4C) in an Aluminum 7075 (Al7075) matrix. A combined optimization approach was used to balance these factors, evaluating Pulse ON time, Current, Voltage, and Pulse OFF time. Response Surface Methodology (RSM) optimized single responses, while multi-response optimization employed a hybrid method combining the Entropy Weight Method (EWM), Taguchi approach, TOPSIS, and GRA. Analysis of Variance (ANOVA) assessed parameter significance, revealing substantial impacts on SR, MRR, and EWR. Based on TOPSIS and GRA, optimized parameters achieved a desirable balance: high MRR (0.4172, 0.5240 mm3/min), minimal EWR (0.0068, 0.0103 mm3/min), and acceptable SR (10.3877, 9.1924 mu m) based on EWM-weighted priorities. Confirmation experiments validated a 15 % improvement in the closeness coefficient, and a 16 % improvement in the Grey relational grade, which considers combined SR, MRR, and EWR performance. Scanning Electron Microscope (SEM) analysis of surfaces machined with optimal parameters showed minimal debris, cracks, and no recast layer, indicating high surface integrity. This research enhances EDM optimization for AMMC, achieving efficiency in machining, minimizing tool wear, and meeting surface quality requirements.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Optimization of EDM process of titanium alloy using EPSDE technique
    Mahendra Raj Singh
    Pankaj Kumar Shrivastava
    Pushpendra Singh
    Multiscale and Multidisciplinary Modeling, Experiments and Design, 2021, 4 : 121 - 130
  • [22] Experimental Investigation and optimization of EDM process parameters on Aluminum metal matrix composite
    Bodukuri, Anil Kumar
    Chandramouli, S.
    Eswaraiah, K.
    Laxman, J.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (11) : 24731 - 24740
  • [23] Optimization of Process Parameters in EDM with Magnetic Field Using Grey Relational Analysis with Taguchi Technique
    Anand, G.
    Satyanarayana, S.
    Hussain, M. Manzoor
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (08) : 7723 - 7730
  • [24] Optimization of Machine Process Parameters in EDM for EN 31 Using Evolutionary Optimization Techniques
    Faisal, Nadeem
    Kumar, Kaushik
    TECHNOLOGIES, 2018, 6 (02):
  • [25] Hybrid Taguchi-GRA-CRITIC Optimization Method for Multi-Response Optimization of Micro-EDM Drilling Process Parameters
    Singh, Ritesh Kumar
    Tiwari, Sanjiv Kumar
    Srivastava, Sharad Chandra
    Kumar, Binay
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2023, 30 (03): : 804 - 814
  • [26] Modeling and Optimization of EDM Process Parameters on Machining of Al 7075-B4C MMC Using RSM
    Gopalakannan, S.
    Senthilvelan, T.
    Ranganathan, S.
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 685 - 690
  • [27] Hybrid WCMFO algorithm for the optimization of AWJ process parameters
    Tamilarasan, A.
    Rajmohan, T.
    Ashwinkumar, K. G.
    Dinesh, B.
    Praveenkumar, M.
    Reddy, R. Dinesh
    Kiran, K. V. V. Surya
    Elangumaran, R.
    Krishnamoorthi, S.
    5TH INTERNATIONAL CONFERENCE ON MATERIALS AND MANUFACTURING ENGINEERING-2020 (ICMME-2020), 2020, 954
  • [28] Optimization of process parameters on EDM of titanium alloy
    Gugulothu, Bhiksha
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 257 - 262
  • [29] Sensitivity analysis and optimization of EDM process parameters
    Ragavendran, Uvaraja
    Ghadai, Ranjan Kumar
    Bhoi, Akash Kumar
    Ramachandran, Manickam
    Kalita, Kanak
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2019, 43 (01) : 13 - 25
  • [30] Speech Enhancement Using Hybrid Optimization Technique
    Anoop, V.
    Rao, P. V.
    1ST GLOBAL COLLOQUIUM ON RECENT ADVANCEMENTS AND EFFECTUAL RESEARCHES IN ENGINEERING, SCIENCE AND TECHNOLOGY - RAEREST 2016, 2016, 25 : 5 - 11