Interaction of Cathode Interface Microenvironment and Anode Electrolyte in Zero-Gap Electrolyzer for CO2 Conversion

被引:1
|
作者
Yuan, Lei [1 ]
Wan, Qiqi [1 ]
Jiang, Wenxing [1 ]
Li, Guangfu [2 ]
Zhuang, Xiaodong [3 ]
Zhang, Junliang [1 ]
Ke, Changchun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Fuel Cells, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Foshan Xianhu Lab Adv Energy Sci & Technol, Guangdong Lab, Foshan 528200, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Mesoentropy Matter Lab, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CO2 electrochemical reduction; membrane electrodeassembly; cathode interface; electrolyte; gas diffusion electrode;
D O I
10.1021/acssuschemeng.4c02781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic conversion of carbon dioxide into fuels and chemicals using renewable energy holds tremendous promise as a viable solution for mitigating CO2 and storing intermittent renewable resources. While considerable researches have explored catalysts for CO2 reduction, opportunities remain to improve the efficiency and selectivity of the electrochemical conversion through tailored electrode and electrolyzer designs. Herein, we investigated the impact of anode electrolyte on the cathode interfacial microenvironment in zero-gap electrolytic cells for carbon dioxide reduction by employing two customized cathode electrode preparation technologies. It was found that due to variances in interfacial resistance caused by the interfacial differences, the catalyst-coated membrane (CCM) exhibited superior performance when the anode electrolyte was pure water, whereas the catalyst-coated substrate (CCS) demonstrated enhanced capabilities when the anode electrolyte was 1 M KHCO3. Further experiments also revealed that due to the distinct distribution of cathode electrolyte, CCS exhibited superior gas diffusion flux and stability, while CCM demonstrated higher catalyst utilization efficiency. These findings provide new insights into optimizing carbon dioxide reduction in zero-gap assemblies, and suggest that the anode electrolyte should be matched and optimized based on the different interface characteristics of the electrodes.
引用
收藏
页码:11949 / 11956
页数:8
相关论文
共 50 条
  • [41] Pulsed-Current Operation Enhances H2O2 Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer
    Vass, Adam
    Goeltz, Maximilian
    Ghanem, Hanadi
    Rosiwal, Stefan
    Franken, Tanja
    Palkovits, Regina
    Mul, Guido
    Tsampas, Mihalis N.
    Katsoukis, Georgios
    Altomare, Marco
    CHEMSUSCHEM, 2025,
  • [42] Unveiling the anode reaction environment in a CO2 electrolyzer to provide a guideline for anode development
    Song, Ji Hwan
    Ka, Seohyeon
    Lim, Chulwan
    Han, Man Ho
    Lee, Dong Ki
    Oh, Hyung-Suk
    Lee, Woong Hee
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (36) : 19312 - 19320
  • [43] High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis
    Disch, Joey
    Bohn, Luca
    Koch, Susanne
    Schulz, Michael
    Han, Yiyong
    Tengattini, Alessandro
    Helfen, Lukas
    Breitwieser, Matthias
    Vierrath, Severin
    NATURE COMMUNICATIONS, 2022, 13 (01) : 6099
  • [44] Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers
    El-Nagar, Gumaa A. A.
    Haun, Flora
    Gupta, Siddharth
    Stojkovikj, Sasho
    Mayer, Matthew T. T.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Zero-Gap Electrolyzers Accelerate Reconstruction of Cu2O-Derived Catalysts under CO2 Reduction
    Abed, Jehad
    Grigioni, Ivan
    Kose, Talha
    Alnoush, Wajdi
    Park, Sungjin
    Polo, Annalisa
    Lee, Byoung-Hoon
    Sinton, David
    Higgins, Drew
    Sargent, Edward H.
    ACS ENERGY LETTERS, 2024, 9 (12): : 6225 - 6232
  • [46] Performance and Stability of Aemion and Aemion plus Membranes in Zero-Gap CO2 Electrolyzers with Mild Anolyte Solutions
    Mardle, Peter
    Gangrade, Apurva
    Saatkamp, Torben
    Jiang, Zhengming
    Cassegrain, Simon
    Zhao, Nana
    Shi, Zhiqing
    Holdcroft, Steven
    CHEMSUSCHEM, 2023, 16 (14)
  • [47] Exploring the (Dis)-Similarities of Half-Cell and Full Cell Zero-Gap Electrolyzers for the CO2 Electroreduction
    Chanda, Vimanshu
    Blaudszun, Dennis
    Hoof, Lucas
    Sanjuan, Ignacio
    Pellumbi, Kevinjeorjios
    Junge Puring, Kai
    Andronescu, Corina
    Apfel, Ulf-Peter
    CHEMELECTROCHEM, 2024, 11 (05)
  • [48] Activity and Selectivity in the Electrochemical Reduction of CO2 at CuSnx Electrocatalysts Using a Zero-Gap Membrane Electrode Assembly
    Dauda, Monsuru
    Hendershot, John
    Bello, Mustapha
    Park, Junghyun
    Orduz, Alvaro Loaiza
    Kizilkaya, Orhan
    Sprunger, Phillip
    Engler, Anthony
    Yao, Koffi
    Plaisance, Craig
    Flake, John
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (08)
  • [49] High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis
    Joey Disch
    Luca Bohn
    Susanne Koch
    Michael Schulz
    Yiyong Han
    Alessandro Tengattini
    Lukas Helfen
    Matthias Breitwieser
    Severin Vierrath
    Nature Communications, 13
  • [50] Unlocking the Activity of Molecular Assemblies for CO2 Electroreduction in Zero-Gap Electrolysers via Catalyst Ink Engineering
    Pellumbi, Kevinjeorjios
    Kraeenbring, Mena-Alexander
    Krisch, Dominik
    Wiesner, Wiebke
    Sanden, Sebastian
    Siegmund, Daniel
    Oezcan, Fatih
    Puring, Kai junge
    Cao, Rui
    Schoefberger, Wolfgang
    Segets, Doris
    Apfel, Ulf-Peter
    SMALL, 2025, 21 (08)