Interaction of Cathode Interface Microenvironment and Anode Electrolyte in Zero-Gap Electrolyzer for CO2 Conversion

被引:1
|
作者
Yuan, Lei [1 ]
Wan, Qiqi [1 ]
Jiang, Wenxing [1 ]
Li, Guangfu [2 ]
Zhuang, Xiaodong [3 ]
Zhang, Junliang [1 ]
Ke, Changchun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Fuel Cells, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Foshan Xianhu Lab Adv Energy Sci & Technol, Guangdong Lab, Foshan 528200, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Mesoentropy Matter Lab, Shanghai 200240, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CO2 electrochemical reduction; membrane electrodeassembly; cathode interface; electrolyte; gas diffusion electrode;
D O I
10.1021/acssuschemeng.4c02781
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic conversion of carbon dioxide into fuels and chemicals using renewable energy holds tremendous promise as a viable solution for mitigating CO2 and storing intermittent renewable resources. While considerable researches have explored catalysts for CO2 reduction, opportunities remain to improve the efficiency and selectivity of the electrochemical conversion through tailored electrode and electrolyzer designs. Herein, we investigated the impact of anode electrolyte on the cathode interfacial microenvironment in zero-gap electrolytic cells for carbon dioxide reduction by employing two customized cathode electrode preparation technologies. It was found that due to variances in interfacial resistance caused by the interfacial differences, the catalyst-coated membrane (CCM) exhibited superior performance when the anode electrolyte was pure water, whereas the catalyst-coated substrate (CCS) demonstrated enhanced capabilities when the anode electrolyte was 1 M KHCO3. Further experiments also revealed that due to the distinct distribution of cathode electrolyte, CCS exhibited superior gas diffusion flux and stability, while CCM demonstrated higher catalyst utilization efficiency. These findings provide new insights into optimizing carbon dioxide reduction in zero-gap assemblies, and suggest that the anode electrolyte should be matched and optimized based on the different interface characteristics of the electrodes.
引用
收藏
页码:11949 / 11956
页数:8
相关论文
共 50 条
  • [21] Enhanced CO2 reduction with hydrophobic cationic-ionomer layer-modified zero-gap MEA in acidic electrolyte
    Zhao, Xueyang
    Xie, Hongtao
    Deng, Bangwei
    Wang, Lili
    Li, Yizhao
    Dong, Fan
    CHEMICAL COMMUNICATIONS, 2024, 60 (05) : 542 - 545
  • [22] Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers
    Joensen, Bjort Oladottir
    Zeledon, Jose A. Zamora
    Trotochaud, Lena
    Sartori, Andrea
    Mirolo, Marta
    Moss, Asger Barkholt
    Garg, Sahil
    Chorkendorff, Ib
    Drnec, Jakub
    Seger, Brian
    Xu, Qiucheng
    JOULE, 2024, 8 (06) : 1754 - 1771
  • [23] Modeling Planar Electrodes and Zero-Gap Membrane Electrode Assemblies for CO2 Electrolysis
    Ehlinger, Victoria M.
    Lee, Dong Un
    Lin, Tiras Y.
    Duoss, Eric B.
    Baker, Sarah E.
    Jaramillo, Thomas F.
    Hahn, Christopher
    CHEMELECTROCHEM, 2024, 11 (07)
  • [24] A Zero-Gap Electrolyzer Enables Supporting Electrolyte-Free Seawater Splitting for Energy-Saving Hydrogen Production
    Ren, Yongwen
    Fan, Faying
    Zhang, Shu
    Liu, Zhaohan
    Zhang, Yaojian
    Sun, Fu
    Li, Jiedong
    Chen, Lin
    Wang, Zhe
    Zhao, Jingwen
    Qiu, Jieshan
    Cui, Guanglei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [25] N, S-coordinated Ni single-atom catalysts for efficient CO2 reduction in a zero-gap membrane electrode assembly electrolyzer
    Jeon, Ye Eun
    Hong, Jumi
    An, Byeong-Seon
    Kim, Hyun You
    Kim, Chunjoong
    Lee, Jinwoo
    Lee, Han-Koo
    Park, Jinwon
    Ko, You Na
    Kim, Young Eun
    MATERIALS TODAY ENERGY, 2024, 46
  • [26] CO2 electroreduction enhanced by transitional layer at cathode/electrolyte interface
    Zhang, Lixiao
    Hu, Shiqing
    Li, Wenping
    Zhang, Peng
    Cao, Zhongwei
    Zhu, Xuefeng
    Yang, Weishen
    JOURNAL OF POWER SOURCES, 2020, 451 (451)
  • [27] The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: A Fumion vs. Nafion comparison
    Liu, Menglong
    Hu, Huifang
    Kong, Ying
    Montiel, Ivan Zelocualtecatl
    Kolivoska, Viliam
    V. Rudnev, Alexander
    Hou, Yuhui
    Erni, Rolf
    Vesztergom, Soma
    Broekmann, Peter
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 335
  • [28] Flow Field Design Matters for High Current Density Zero-Gap CO2 Electrolyzers
    Yuan, Shu
    Wang, Rongyi
    Xue, Rui
    Wu, Lizhen
    Zhang, Guiru
    Li, Huiyuan
    Wang, Qing
    Yin, Jiewei
    Luo, Liuxuan
    Shen, Shuiyun
    An, Liang
    Yan, Xiaohui
    Zhang, Junliang
    ACS ENERGY LETTERS, 2024, 9 (12): : 5945 - 5954
  • [29] A Zero-Gap Gas Phase Photoelectrolyzer for CO2 Reduction with Porous Carbon Supported Photocathodes
    Zhao, Yujie
    Merino-Garcia, Ivan
    Albo, Jonathan
    Kaiser, Andreas
    CHEMSUSCHEM, 2024, 17 (16)
  • [30] Effect of Gold Catalyst Surface Morphology on Wetting Behavior and Electrochemical CO2 Reduction Performance in a Large-Area Zero-Gap Gas Diffusion Electrolyzer
    Qi, Zhen
    Kashi, Ajay R.
    Buckley, Aya K.
    Miller, John S.
    Ye, Jianchao
    Biener, Monika M.
    Foucher, Alexandre C.
    Stach, Eric A.
    Ma, Sichao
    Kuhl, Kendra P.
    Biener, Juergen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (46): : 19637 - 19646