technology, renowned for its decentralized, immutable, and transparent features, offers a reliable framework for trust in distributed systems. The growing popularity of consortium blockchains, which include public, private, hybrid, and consortium chains, stems from their balance of privacy and collaboration. A significant challenge in these systems is the scalability of consensus mechanisms, particularly algorithm. This review focuses on enhancing PBFT's scalability, a critical factor in the effectiveness of consortium chains. Innovations such as Boneh-Lynn-Shacham (BLS) signatures and Verifiable Random Functions (VRF) are highlighted for their ability to reduce algorithmic complexity and increase transaction throughput. The discussion extends to real-world applications, particularly in platforms like Hyperledger Fabric, showcasing the practical benefits of these advancements. This paper provides a concise overview of the latest methodologies that enhance the performance scalability of PBFT-based consortium chains, serving as a valuable resource for researchers and practitioners aiming to optimize these systems for high-performance demands.