Deep spatial-spectral difference network with heterogeneous feature mutual learning for sea fog detection

被引:0
|
作者
Wu, Nan [1 ]
Jin, Wei [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multispectral image; Sea fog detection; Mutual information; Multi-view learning;
D O I
10.1016/j.jag.2024.104104
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Multispectral remote sensing image-based sea fog detection (SFD) is both important and challenging. Deep learning methods for SFD have become mainstream due to their powerful nonlinear learning capabilities and flexibility. However, existing methods have not fully utilized the physical difference priors in multispectral images (MSI) for SFD, making it difficult to skillfully capture the shape and appearance characteristics of sea fog, thus leading to uncertainties in SFD. We propose the spatial-spectral difference network (S2DNet), a deep encoding-decoding framework that merges inter-spectral and intra-spectral heterogeneous difference features. Specifically, inspired by physics-based difference threshold methods, we developed a physics-inspired inter-spectral difference module (PIDM) that combines feature-level difference with deep neural networks to capture the shape characteristics of sea fog. We designed the intra-spectral difference module (ISDM) using difference convolution to represent sea fog's fine-grained and dynamic appearance information. Furthermore, inspired by multi-view learning, we propose heterogeneous feature mutual learning (HFML) that seeks robust representations by focusing on semantically invariant aspects within heterogeneous difference features, adapting to the dynamic nature of sea fog. HFML is achieved through global feature mutual learning using an adversarial procedure and local feature mutual learning supported by a novel information-theoretic objective function that links maximizing statistical correlation with expectation maximization. Experiments on two SFD datasets show that integrating physical difference priors into deep learning improves SFD. In both continuous temporal and high spatial resolution SFD tasks, S2DNet outperforms existing advanced deep learning methods. Moreover, S2DNet demonstrates stronger robustness under degraded remote sensing image conditions, highlighting its potential usefulness and practicality in real-world applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Multiple Spatial-Spectral Features Aggregated Neural Network for Hyperspectral Change Detection
    Ding, Jigang
    Li, Xiaorun
    Li, Jingsui
    Chen, Shuhan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 (1-5) : 1 - 5
  • [42] Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification
    Hu, Wen-Shuai
    Li, Heng-Chao
    Pan, Lei
    Li, Wei
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 4237 - 4250
  • [43] Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network
    Yuan, Qiangqiang
    Zhang, Qiang
    Li, Jie
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1205 - 1218
  • [44] PASSNet: A Spatial-Spectral Feature Extraction Network With Patch Attention Module for Hyperspectral Image Classification
    Ji, Renjie
    Tan, Kun
    Wang, Xue
    Pan, Chen
    Xin, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [45] Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning
    Han, Yanling
    Gao, Yi
    Zhang, Yun
    Wang, Jing
    Yang, Shuhu
    REMOTE SENSING, 2019, 11 (18)
  • [46] A spatial-spectral semisupervised deep learning framework using siamese networks and angular loss
    Mukherjee, Souvick
    Prasad, Saurabh
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 194
  • [47] Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface
    Liu, Chang
    Jin, Jing
    Xu, Ren
    Li, Shurui
    Zuo, Cili
    Sun, Hao
    Wang, Xingyu
    Cichocki, Andrzej
    JOURNAL OF NEURAL ENGINEERING, 2021, 18 (04)
  • [48] A deep manifold learning approach for spatial-spectral classification with limited labeled training samples
    Zhou, Xichuan
    Liu, Nian
    Tang, Fang
    Zhao, Yingjun
    Qin, Kai
    Zhang, Lei
    Li, Dong
    NEUROCOMPUTING, 2019, 331 : 138 - 149
  • [49] Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning
    Zhang, Qian
    Tian, Yuan
    Yang, Yiping
    Pan, Chunhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 261 - 279
  • [50] Cloud Detection Method Based on Spatial-Spectral Features and Encoder-Decoder Feature Fusion
    Zhang, Jing
    Shi, Xinlong
    Wu, Jun
    Song, Liangnong
    Li, Yunsong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15