Roughness of geodesics in Liouville quantum gravity

被引:0
|
作者
Fan, Zherui [1 ]
Goswami, Subhajit [2 ]
机构
[1] Peking Univ, Sch Math Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Mumbai 400005, India
关键词
Liouville quantum gravity (LQG); Liouville first passage percolation (LFPP); Gaussian free field (GFF); Random metrics; Random curves; Hausdorff dimension; PERCOLATION; GEOMETRY; BOUNDS;
D O I
10.1214/23-AIHP1377
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The metric associated with the Liouville quantum gravity (LQG) surface has been constructed through a series of recent works and several properties of its associated geodesics have been studied. In the current article we confirm the folklore conjecture that the Euclidean Hausdorff dimension of LQG geodesics is strictly greater than 1 for all values of the so-called Liouville first passage percolation (LFPP) parameter xi. We deduce this from a general criterion due to Aizenman and Burchard ( Duke Math. J. 99 (1999), 419-453) which in our case amounts to near-geometric bounds on the probabilities of certain crossing events for LQG geodesics in the number of crossings. We obtain such bounds using the axiomatic characterization of the LQG metric after proving a special regularity property for the Gaussian free field (GFF). We also prove an analogous result for the LFPP geodesics.
引用
收藏
页码:2194 / 2210
页数:17
相关论文
共 50 条
  • [21] Liouville quantum gravity on complex tori
    David, Francois
    Rhodes, Remi
    Vargas, Vincent
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [22] Liouville quantum gravity on the unit disk
    Huang, Yichao
    Rhodes, Remi
    Vargas, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1694 - 1730
  • [23] Liouville Quantum Gravity on the Riemann Sphere
    David, Francois
    Kupiainen, Antti
    Rhodes, Remi
    Vargas, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 869 - 907
  • [24] Geodesic distances in Liouville quantum gravity
    Ambjorn, J.
    Budd, T. G.
    NUCLEAR PHYSICS B, 2014, 889 : 676 - 691
  • [25] Liouville Quantum Gravity on the Riemann Sphere
    François David
    Antti Kupiainen
    Rémi Rhodes
    Vincent Vargas
    Communications in Mathematical Physics, 2016, 342 : 869 - 907
  • [26] A distance exponent for Liouville quantum gravity
    Ewain Gwynne
    Nina Holden
    Xin Sun
    Probability Theory and Related Fields, 2019, 173 : 931 - 997
  • [27] From quantum groups to Liouville and dilaton quantum gravity
    Yale Fan
    Thomas G. Mertens
    Journal of High Energy Physics, 2022
  • [28] From quantum groups to Liouville and dilaton quantum gravity
    Fan, Yale
    Mertens, Thomas G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [29] NOTES ON QUANTUM LIOUVILLE THEORY AND QUANTUM-GRAVITY
    SEIBERG, N
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1990, (102): : 319 - 349
  • [30] KPZ FORMULAS FOR THE LIOUVILLE QUANTUM GRAVITY METRIC
    Gwynne, Ewain
    Pfeffer, Joshua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (12) : 8297 - 8324