The slice sampler and centrally symmetric distributions

被引:0
|
作者
Planas, Christophe [1 ]
Rossi, Alessandro [1 ]
机构
[1] European Commiss, Joint Res Ctr, Ispra, Italy
来源
MONTE CARLO METHODS AND APPLICATIONS | 2024年 / 30卷 / 03期
关键词
Markov chain Monte Carlo; multivariate sampling; inefficiency factor; BAYESIAN-ANALYSIS; SWENDSEN-WANG; CONVERGENCE;
D O I
10.1515/mcma-2024-2012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the slice sampler generates Markov chains whose variables are mean independent and thus uncorrelated when the target density is centrally symmetric. Skewness instead boosts correlations. Popular implementation algorithms such as stepping-out and multivariate-sampling-with-hyperrectangles add statistical inefficiency, the first in case of multimodality, the second in all circumstances. A new sampler which exploits these structural and algorithmic characteristics to reduce the variance of Monte Carlo estimates is experimented in several sampling problems. An insight into the properties of the product slice sampler is also provided.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条
  • [21] QUASICLASSICAL SCATTERING IN A CENTRALLY SYMMETRIC FIELD
    KHUDYAKOV, SV
    SOVIET PHYSICS JETP-USSR, 1970, 30 (03): : 506 - +
  • [22] CENTRALLY-SYMMETRIC GRAVITATIONAL FIELDS
    PETROV, AZ
    SOVIET PHYSICS JETP-USSR, 1963, 17 (05): : 1026 - 1031
  • [23] Pentagram Rigidity for Centrally Symmetric Octagons
    Evan Schwartz, Richard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (12) : 9535 - 9561
  • [24] Centrally symmetric configurations of order polytopes
    Hibi, Takayuki
    Matsuda, Kazunori
    Ohsugi, Hidefumi
    Shibata, Kazuki
    JOURNAL OF ALGEBRA, 2015, 443 : 469 - 478
  • [25] Spherical projections and centrally symmetric sets
    Fallert, H
    Goodey, P
    Weil, W
    ADVANCES IN MATHEMATICS, 1997, 129 (02) : 301 - 322
  • [26] Centrally symmetric manifolds with few vertices
    Klee, Steven
    Novik, Isabella
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 487 - 500
  • [27] Highly neighborly centrally symmetric spheres
    Novik, Isabella
    Zheng, Hailun
    ADVANCES IN MATHEMATICS, 2020, 370
  • [28] QUASICLASSICAL SCATTERING IN A CENTRALLY SYMMETRIC FIELD
    PATASHINSKII, AZ
    POKROVSKII, VL
    KHALATNIKOV, IM
    SOVIET PHYSICS JETP-USSR, 1964, 18 (03): : 683 - 692
  • [29] A Centrally Symmetric Version of the Cyclic Polytope
    Alexander Barvinok
    Isabella Novik
    Discrete & Computational Geometry, 2008, 39 : 76 - 99
  • [30] CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES
    Barvinok, Alexander
    Lee, Seung Jin
    Novik, Isabella
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (01) : 457 - 472