Machine learning-based prediction model for hypofibrinogenemia after tigecycline therapy

被引:0
|
作者
Zhu, Jianping [1 ]
Zhao, Rui [1 ]
Yu, Zhenwei [1 ]
Li, Liucheng [1 ]
Wei, Jiayue [2 ]
Guan, Yan [1 ]
机构
[1] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Pharm Dept, Hangzhou 310020, Peoples R China
[2] Zhejiang Canc Hosp, Hangzhou 310022, Zhejiang, Peoples R China
关键词
Tigecycline; Hypofibrinogenemia; Machine learning; Influencing factors; Prediction models; Survival model; RISK;
D O I
10.1186/s12911-024-02694-x
中图分类号
R-058 [];
学科分类号
摘要
BackgroundIn clinical practice, the incidence of hypofibrinogenemia (HF) after tigecycline (TGC) treatment significantly exceeds the probability claimed by drug manufacturers.ObjectiveWe aimed to identify the risk factors for TGC-associated HF and develop prediction and survival models for TGC-associated HF and the timing of TGC-associated HF.MethodsThis single-center retrospective cohort study included 222 patients who were prescribed TGC. First, we used binary logistic regression to screen the independent factors influencing TGC-associated HF, which were used as predictors to train the extreme gradient boosting (XGBoost) model. Receiver operating characteristic curve (ROC), calibration curve, decision curve analysis (DCA), and clinical impact curve analysis (CICA) were used to evaluate the performance of the model in the verification cohort. Subsequently, we conducted survival analysis using the random survival forest (RSF) algorithm. A consistency index (C-index) was used to evaluate the accuracy of the RSF model in the verification cohort.ResultsBinary logistic regression identified nine independent factors influencing TGC-associated HF, and the XGBoost model was constructed using these nine predictors. The ROC and calibration curves showed that the model had good discrimination (areas under the ROC curves (AUC) = 0.792 [95% confidence interval (CI), 0.668-0.915]) and calibration ability. In addition, DCA and CICA demonstrated good clinical practicability of this model. Notably, the RSF model showed good accuracy (C-index = 0.746 [95%CI, 0.652-0.820]) in the verification cohort. Stratifying patients treated with TGC based on the RSF model revealed a statistically significant difference in the mean survival time between the low- and high-risk groups.ConclusionsThe XGBoost model effectively predicts the risk of TGC-associated HF, whereas the RSF model has advantages in risk stratification. These two models have significant clinical practical value, with the potential to reduce the risk of TGC therapy.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Machine learning-based risk prediction model for arteriovenous fistula stenosis
    Shu, Peng
    Huang, Ling
    Huo, Shanshan
    Qiu, Jun
    Bai, Haitao
    Wang, Xia
    Xu, Fang
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2025, 30 (01)
  • [22] Considerations and prospects for validating a machine learning-based choledocholithiasis prediction model
    Chen, Dexin
    Zhai, Yaqi
    Li, Mingyang
    ENDOSCOPY, 2024, 56 (07) : 553 - 553
  • [23] Machine learning-based prediction model and visual interpretation for prostate cancer
    Chen, Gang
    Dai, Xuchao
    Zhang, Mengqi
    Tian, Zhujun
    Jin, Xueke
    Mei, Kun
    Huang, Hong
    Wu, Zhigang
    BMC UROLOGY, 2023, 23 (01)
  • [24] Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model
    Arjaria, Siddhartha Kumar
    Rathore, Abhishek Singh
    Chaubey, Gyanendra
    INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS, 2022, 9 (03)
  • [25] Machine Learning-based Model for Early Prediction of Coronary Artery Disease
    Ahmad, Nabeel
    Yadav, Sudeept Singh
    Moharana, Alok Kumar
    CARDIOMETRY, 2022, (24): : 373 - 378
  • [26] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [27] Machine learning-based prediction model for late recurrence after surgery in patients with renal cell carcinoma
    Hyung Min Kim
    Seok-Soo Byun
    Jung Kwon Kim
    Chang Wook Jeong
    Cheol Kwak
    Eu Chang Hwang
    Seok Ho Kang
    Jinsoo Chung
    Yong-June Kim
    Yun-Sok Ha
    Sung-Hoo Hong
    BMC Medical Informatics and Decision Making, 22
  • [28] Machine learning-based prediction model for late recurrence after surgery in patients with renal cell carcinoma
    Kim, Hyung Min
    Byun, Seok-Soo
    Kim, Jung Kwon
    Jeong, Chang Wook
    Kwak, Cheol
    Hwang, Eu Chang
    Kang, Seok Ho
    Chung, Jinsoo
    Kim, Yong-June
    Ha, Yun-Sok
    Hong, Sung-Hoo
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [29] Prediction model for hepatocellular carcinoma recurrence after hepatectomy: Machine learning-based development and interpretation study
    Liu, Rongqiang
    Wu, Shinan
    Yu, Hao yuan
    Zeng, Kaining
    Liang, Zhixing
    Li, Siqi
    Hu, Yongwei
    Yang, Yang
    Ye, Linsen
    HELIYON, 2023, 9 (11)
  • [30] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)