Industrial Image Anomaly Detection via Self-Supervised Learning with Feature Enhancement Assistance

被引:0
|
作者
Wu, Bin [1 ]
Wang, Xiaoqi [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Comp & Commun Engn, Hebei Key Lab Marine Percept Network & Data Proc, Qinhuangdao 066004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
美国国家科学基金会;
关键词
self-supervised learning; anomaly detection; feature enhancement; SUPPORT;
D O I
10.3390/app14167301
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Industrial anomaly detection is constrained by the scarcity of anomaly samples, limiting the applicability of supervised learning methods. Many studies have focused on anomaly detection by generating anomaly images and adopting self-supervised learning approaches. Leveraging pre-trained networks on ImageNet has been explored to assist in this training process. However, achieving accurate anomaly detection remains time-consuming due to the network's depth and parameter count not being reduced. In this paper, we propose a self-supervised learning method based on Feature Enhancement Patch Distribution Modeling (FEPDM), which generates simulated anomalies. Unlike direct training on the original feature extraction network, our approach utilizes a pre-trained network to extract multi-scale features. By aggregating these multi-scale features, we are able to train at the feature level, thereby adapting more efficiently to various network structures and reducing domain bias with respect to natural image classification. Additionally, it significantly reduces the number of parameters in the training process. Introducing this approach not only enhances the model's generalization ability but also significantly improves the efficiency of anomaly detection. The method was evaluated on MVTec AD and BTAD datasets, and (image-level, pixel-level) AUROC scores of (95.7%, 96.2%), (93.4%, 97.6%) were obtained, respectively. The experimental results have convincingly demonstrated the efficacy of our method in tackling the scarcity of abnormal samples in industrial scenarios, while simultaneously highlighting its broad generalizability.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] JOINT ANOMALY DETECTION AND INPAINTING FOR MICROSCOPY IMAGES VIA DEEP SELF-SUPERVISED LEARNING
    Huang, Ling
    Cheng, Deruo
    Yang, Xulei
    Lin, Tong
    Shi, Yiqiong
    Yang, Kaiyi
    Gwee, Bah Hwee
    Wen, Bihan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3497 - 3501
  • [22] Pure anomaly detection via self-supervised deep metric learning with adaptive margin
    Fatemifar, Soroush
    Awais, Muhammad
    Akbari, Ali
    Kittler, Josef
    NEUROCOMPUTING, 2025, 611
  • [23] Self-Supervised Feature Enhancement: Applying Internal Pretext Task to Supervised Learning
    Xie, Tianshu
    Yang, Yuhang
    Ding, Zilin
    Cheng, Xuan
    Wang, Xiaomin
    Gong, Haigang
    Liu, Ming
    IEEE ACCESS, 2023, 11 : 1708 - 1717
  • [24] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [25] Classification-Based Self-Supervised Learning for Anomaly Detection
    Li, Honghu
    Zhu, Yuesheng
    He, Ying
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [26] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [27] CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
    Guille-Escuret, Charles
    Rodriguez, Pau
    Vazquez, David
    Mitliagkas, Ioannis
    Monteiro, Joao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Deep anomaly detection with self-supervised learning and adversarial training
    Zhang, Xianchao
    Mu, Jie
    Zhang, Xiaotong
    Liu, Han
    Zong, Linlin
    Li, Yuangang
    PATTERN RECOGNITION, 2022, 121
  • [29] Pavement anomaly detection based on transformer and self-supervised learning
    Lin, Zijie
    Wang, Hui
    Li, Shenglin
    AUTOMATION IN CONSTRUCTION, 2022, 143
  • [30] Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
    Yoa, Seungdong
    Lee, Seungjun
    Kim, Chiyoon
    Kim, Hyunwoo J.
    IEEE ACCESS, 2021, 9 : 147201 - 147211