CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning

被引:0
|
作者
Guille-Escuret, Charles [1 ,2 ]
Rodriguez, Pau [1 ]
Vazquez, David [1 ]
Mitliagkas, Ioannis [2 ,3 ]
Monteiro, Joao [1 ]
机构
[1] ServiceNow Res, Montreal, PQ, Canada
[2] Univ Montreal, Mila, Montreal, PQ, Canada
[3] CIFAR AI, Toronto, ON, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handling out-of-distribution (OOD) samples has become a major stake in the real-world deployment of machine learning systems. This work explores the use of self-supervised contrastive learning to the simultaneous detection of two types of OOD samples: unseen classes and adversarial perturbations. First, we pair self-supervised contrastive learning with the maximum mean discrepancy (MMD) two-sample test. This approach enables us to robustly test whether two independent sets of samples originate from the same distribution, and we demonstrate its effectiveness by discriminating between CIFAR-10 and CIFAR-10.1 with higher confidence than previous work. Motivated by this success, we introduce CADet (Contrastive Anomaly Detection), a novel method for OOD detection of single samples. CADet draws inspiration from MMD, but leverages the similarity between contrastive transformations of a same sample. CADet outperforms existing adversarial detection methods in identifying adversarially perturbed samples on ImageNet and achieves comparable performance to unseen label detection methods on two challenging benchmarks: ImageNet-O and iNaturalist. Significantly, CADet is fully self-supervised and requires neither labels for in-distribution samples nor access to OOD examples.(1)
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [2] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [3] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [4] Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning
    Kong, Xiangjie
    Zhang, Wenyi
    Wang, Hui
    Hou, Mingliang
    Chen, Xin
    Yan, Xiaoran
    Das, Sajal K.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [5] Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning
    Liu, Yixin
    Li, Zhao
    Pan, Shirui
    Gong, Chen
    Zhou, Chuan
    Karypis, George
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2378 - 2392
  • [6] CARLA: Self-supervised contrastive representation learning for time series anomaly detection
    Darban, Zahra Zamanzadeh
    Webb, Geoffrey I.
    Pan, Shirui
    Aggarwal, Charu C.
    Salehi, Mahsa
    [J]. PATTERN RECOGNITION, 2025, 157
  • [7] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [8] Self-Supervised Contrastive Learning for Volcanic Unrest Detection
    Bountos, Nikolaos Ioannis
    Papoutsis, Ioannis
    Michail, Dimitrios
    Anantrasirichai, Nantheera
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] SELF-SUPERVISED AUDIO ENCODER WITH CONTRASTIVE PRETRAINING FOR RESPIRATORY ANOMALY DETECTION
    Kulkarni, Shubham
    Watanabe, Hideaki
    Homma, Fuminori
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [10] Self-supervised Learning for Anomaly Detection in Fundus Image
    Ahn, Sangil
    Shin, Jitae
    [J]. OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2022, 2022, 13576 : 143 - 151