Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning

被引:1
|
作者
Kong, Xiangjie [1 ]
Zhang, Wenyi [1 ]
Wang, Hui [2 ]
Hou, Mingliang [2 ]
Chen, Xin [2 ]
Yan, Xiaoran [3 ]
Das, Sajal K. [4 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[3] Res Inst Artificial Intelligence, Zhejiang Lab, Hangzhou 311100, Peoples R China
[4] Missouri Univ Sci & Technol, Dept Comp Sci, Rolla, MO 65409 USA
基金
中国国家自然科学基金;
关键词
Anomaly detection; Data privacy; Vectors; Training; Data models; Privacy; Federated learning; attributed networks; contrastive self-supervised learning (CSSL); federated learning (FL);
D O I
10.1109/TNNLS.2024.3414326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attribute graph anomaly detection aims to identify nodes that significantly deviate from the majority of normal nodes, and has received increasing attention due to the ubiquity and complexity of graph-structured data in various real-world scenarios. However, current mainstream anomaly detection methods are primarily designed for centralized settings, which may pose privacy leakage risks in certain sensitive situations. Although federated graph learning offers a promising solution by enabling collaborative model training in distributed systems while preserving data privacy, a practical challenge arises as each client typically possesses a limited amount of graph data. Consequently, naively applying federated graph learning directly to anomaly detection tasks in distributed environments may lead to suboptimal performance results. We propose a federated graph anomaly detection framework via contrastive self-supervised learning (CSSL) federated CSSL anomaly detection framework (FedCAD) to address these challenges. FedCAD updates anomaly node information between clients via federated learning (FL) interactions. First, FedCAD uses pseudo-label discovery to determine the anomaly node of the client preliminarily. Second, FedCAD employs a local anomaly neighbor embedding aggregation strategy. This strategy enables the current client to aggregate the neighbor embeddings of anomaly nodes from other clients, thereby amplifying the distinction between anomaly nodes and their neighbor nodes. Doing so effectively sharpens the contrast between positive and negative instance pairs within contrastive learning, thus enhancing the efficacy and precision of anomaly detection through such a learning paradigm. Finally, the efficiency of FedCAD is demonstrated by experimental results on four real graph datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [2] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [3] Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning
    Liu, Yixin
    Li, Zhao
    Pan, Shirui
    Gong, Chen
    Zhou, Chuan
    Karypis, George
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2378 - 2392
  • [4] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [5] CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
    Guille-Escuret, Charles
    Rodriguez, Pau
    Vazquez, David
    Mitliagkas, Ioannis
    Monteiro, Joao
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [7] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [8] CARLA: Self-supervised contrastive representation learning for time series anomaly detection
    Darban, Zahra Zamanzadeh
    Webb, Geoffrey I.
    Pan, Shirui
    Aggarwal, Charu C.
    Salehi, Mahsa
    [J]. PATTERN RECOGNITION, 2025, 157
  • [9] Anomalous Sub-Trajectory Detection With Graph Contrastive Self-Supervised Learning
    Kong, Xiangjie
    Lin, Hang
    Jiang, Renhe
    Shen, Guojiang
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 9800 - 9811
  • [10] Decoupling Anomaly Discrimination and Representation Learning: Self-supervised Learning for Anomaly Detection on Attributed Graph
    Hu, Yanming
    Chen, Chuan
    Deng, Bowen
    Lai, Yujing
    Lin, Hao
    Zheng, Zibin
    Bian, Jing
    [J]. DATA SCIENCE AND ENGINEERING, 2024, 9 (03) : 264 - 277