Industrial Image Anomaly Detection via Self-Supervised Learning with Feature Enhancement Assistance

被引:0
|
作者
Wu, Bin [1 ]
Wang, Xiaoqi [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Comp & Commun Engn, Hebei Key Lab Marine Percept Network & Data Proc, Qinhuangdao 066004, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
美国国家科学基金会;
关键词
self-supervised learning; anomaly detection; feature enhancement; SUPPORT;
D O I
10.3390/app14167301
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Industrial anomaly detection is constrained by the scarcity of anomaly samples, limiting the applicability of supervised learning methods. Many studies have focused on anomaly detection by generating anomaly images and adopting self-supervised learning approaches. Leveraging pre-trained networks on ImageNet has been explored to assist in this training process. However, achieving accurate anomaly detection remains time-consuming due to the network's depth and parameter count not being reduced. In this paper, we propose a self-supervised learning method based on Feature Enhancement Patch Distribution Modeling (FEPDM), which generates simulated anomalies. Unlike direct training on the original feature extraction network, our approach utilizes a pre-trained network to extract multi-scale features. By aggregating these multi-scale features, we are able to train at the feature level, thereby adapting more efficiently to various network structures and reducing domain bias with respect to natural image classification. Additionally, it significantly reduces the number of parameters in the training process. Introducing this approach not only enhances the model's generalization ability but also significantly improves the efficiency of anomaly detection. The method was evaluated on MVTec AD and BTAD datasets, and (image-level, pixel-level) AUROC scores of (95.7%, 96.2%), (93.4%, 97.6%) were obtained, respectively. The experimental results have convincingly demonstrated the efficacy of our method in tackling the scarcity of abnormal samples in industrial scenarios, while simultaneously highlighting its broad generalizability.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples
    Pei, Mingjing
    Liu, Ningzhong
    Zhao, Bing
    Sun, Han
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [2] Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples
    Mingjing Pei
    Ningzhong Liu
    Bing Zhao
    Han Sun
    International Journal of Computational Intelligence Systems, 16
  • [3] Self-supervised Learning for Anomaly Detection in Fundus Image
    Ahn, Sangil
    Shin, Jitae
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2022, 2022, 13576 : 143 - 151
  • [4] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [5] Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection
    Tu, Yuanpeng
    Zhang, Boshen
    Liu, Liang
    Li, Yuxi
    Zhang, Jiangning
    Wang, Yabiao
    Wang, Chengjie
    Zhao, Cairong
    COMPUTER VISION - ECCV 2024, PT II, 2025, 15060 : 75 - 91
  • [6] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [7] Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning
    Liu, Yixin
    Li, Zhao
    Pan, Shirui
    Gong, Chen
    Zhou, Chuan
    Karypis, George
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2378 - 2392
  • [8] Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning
    Kong, Xiangjie
    Zhang, Wenyi
    Wang, Hui
    Hou, Mingliang
    Chen, Xin
    Yan, Xiaoran
    Das, Sajal K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [9] Revisiting Image Aesthetic Assessment via Self-Supervised Feature Learning
    Sheng, Kekai
    Dong, Weiming
    Chai, Menglei
    Wang, Guohui
    Zhou, Peng
    Huang, Feiyue
    Hu, Bao-Gang
    Ji, Rongrong
    Ma, Chongyang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5709 - 5716
  • [10] Feature Extraction for Out of Distribution Detection via Self-Supervised Learning
    Thorp, Claire
    Sisti, Sean
    Bennette, Walter
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 920 - 924