Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA

被引:1
|
作者
Joo, Jaehan [1 ]
Kim, Sang Yoon [2 ,3 ]
Kim, Donghwan [1 ]
Lee, Ji-Eun [2 ,3 ]
Lee, Seung Min [2 ,3 ]
Suh, Su Youn [2 ,3 ]
Kim, Su-Jin [2 ,3 ]
Kim, Suk Chan [1 ]
机构
[1] Pusan Natl Univ, Dept Elect Engn, Busan, South Korea
[2] Pusan Natl Univ, Dept Ophthalmol, Sch Med, Yangsan, South Korea
[3] Pusan Natl Univ, Yangsan Hosp, Res Inst Convergence Biomed Sci & Technol, Yangsan, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
PREVALENCE; AMBLYOPIA; CHILDREN;
D O I
10.1371/journal.pone.0303355
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we propose a generative data augmentation technique to overcome the challenges of severely limited data when designing a deep learning-based automated strabismus diagnosis system. We implement a generative model based on the StyleGAN2-ADA model for system design and assess strabismus classification performance using two classifiers. We evaluate the capability of our proposed method against traditional data augmentation techniques and confirm a substantial enhancement in performance. Furthermore, we conduct experiments to explore the relationship between the diagnosis agreement among ophthalmologists and the generation performance of the generative model. Beyond FID, we validate the generative samples on the classifier to establish their practicality. Through these experiments, we demonstrate that the generative model-based data augmentation improves overall quantitative performance in scenarios of extreme data scarcity and effectively mitigates overfitting issues during deep learning model training.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Enhancing deep convolutional neural network models for orange quality classification using MobileNetV2 and data augmentation techniques
    Huong, Phan Thi
    Hien, Lam Thanh
    Son, Nguyen Minh
    Tuan, Huynh Cao
    Nguyen, Thanh Q.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2025, 19
  • [42] Using Diffusion Models for Data Augmentation on Limited Rodent OCT Datasets
    Garcia-Torres, Fernando
    del Amor, Roefo
    Morales-Martinez, Sandra
    Barroso, Alvaro
    Kemper, Bjoern
    Schnekeriburger, Jurgen
    Naranjo, Valery
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I, 2025, 15346 : 313 - 324
  • [43] Brain tumors classification with deep learning using data augmentation
    Gurkahraman, Kali
    Karakis, Rukiye
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (02): : 997 - 1011
  • [44] Supervised diagnostic classification of cognitive attributes using data augmentation
    Yoon, Ji-Young
    Gweon, Gahgene
    Yoo, Yun Joo
    PLOS ONE, 2024, 19 (01):
  • [45] Improving Image Classification Robustness Using Predictive Data Augmentation
    Harisubramanyabalaji, Subramani Palanisamy
    Rehman, Shafiq Ur
    Nyberg, Mattias
    Gustavsson, Joakim
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2018, 2018, 11094 : 548 - 561
  • [46] Improving plant disease classification using realistic data augmentation
    Wassim Benabbas
    Mohammed Brahimi
    Samir Akhrouf
    Bilal Fortas
    Multimedia Tools and Applications, 2024, 83 (38) : 86141 - 86160
  • [47] Synthetic Data Augmentation for Video Action Classification Using Unity
    Cauli, Nino
    Reforgiato Recupero, Diego
    IEEE ACCESS, 2024, 12 : 156172 - 156183
  • [48] Hyperspectral Image Classification Using Random Occlusion Data Augmentation
    Haut, Juan Mario
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Li, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) : 1751 - 1755
  • [49] An Auxiliary Synthesis Framework for Enhancing EEG-Based Classification With Limited Data
    Liang, Sui
    Kuang, Shaolong
    Wang, Deheng
    Yuan, Zhaohua
    Zhang, Hongmiao
    Sun, Lining
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 2120 - 2131
  • [50] A Novel Method for Myocardial Image Classification using Data Augmentation
    Zhu, Qing Kun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 893 - 901