Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA

被引:1
|
作者
Joo, Jaehan [1 ]
Kim, Sang Yoon [2 ,3 ]
Kim, Donghwan [1 ]
Lee, Ji-Eun [2 ,3 ]
Lee, Seung Min [2 ,3 ]
Suh, Su Youn [2 ,3 ]
Kim, Su-Jin [2 ,3 ]
Kim, Suk Chan [1 ]
机构
[1] Pusan Natl Univ, Dept Elect Engn, Busan, South Korea
[2] Pusan Natl Univ, Dept Ophthalmol, Sch Med, Yangsan, South Korea
[3] Pusan Natl Univ, Yangsan Hosp, Res Inst Convergence Biomed Sci & Technol, Yangsan, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
PREVALENCE; AMBLYOPIA; CHILDREN;
D O I
10.1371/journal.pone.0303355
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we propose a generative data augmentation technique to overcome the challenges of severely limited data when designing a deep learning-based automated strabismus diagnosis system. We implement a generative model based on the StyleGAN2-ADA model for system design and assess strabismus classification performance using two classifiers. We evaluate the capability of our proposed method against traditional data augmentation techniques and confirm a substantial enhancement in performance. Furthermore, we conduct experiments to explore the relationship between the diagnosis agreement among ophthalmologists and the generation performance of the generative model. Beyond FID, we validate the generative samples on the classifier to establish their practicality. Through these experiments, we demonstrate that the generative model-based data augmentation improves overall quantitative performance in scenarios of extreme data scarcity and effectively mitigates overfitting issues during deep learning model training.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Data Augmentation using Part Analysis for Shape Classification
    Patel, Vismay
    Mujumdar, Niranjan
    Balasubramanian, Prashanth
    Marvaniya, Smit
    Mittal, Anurag
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1223 - 1232
  • [32] Robust Psoriasis Severity Classification by using Data Augmentation
    Moon, Cho-I
    Baek, Yoo Sang
    Choi, Min Hyung
    Lee, Onseok
    Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (12): : 1841 - 1847
  • [33] A CNN Sound Classification Mechanism Using Data Augmentation
    Chu, Hung-Chi
    Zhang, Young-Lin
    Chiang, Hao-Chu
    SENSORS, 2023, 23 (15)
  • [34] Minimization of CNN Training Data by using Data Augmentation for Inline Defect Classification
    Fujishiro, Akihiro
    Nagamura, Yoshikazu
    Usami, Tatsuya
    Inoue, Masao
    2020 INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING (ISSM), 2020,
  • [35] Enhancing deep learning image classification using data augmentation and genetic algorithm-based optimization
    Boudouh, Nouara
    Mokhtari, Bilal
    Foufou, Sebti
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (03)
  • [36] Automated Late Fusion of Low Level Descriptors for Feature Extraction and Texture Classification Using Data Augmentation
    Hazgui, Mohamed
    Ghazouani, Haythem
    Barhoumi, Walid
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, 2022, 1716 : 147 - 162
  • [37] EEGGAN-Net: enhancing EEG signal classification through data augmentation
    Song, Jiuxiang
    Zhai, Qiang
    Wang, Chuang
    Liu, Jizhong
    FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
  • [38] Enhancing Text Classification Models with Generative AI-aided Data Augmentation
    Zhao, Huanhuan
    Chen, Haihua
    Yoon, Hong-Jun
    2023 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING, AITEST, 2023, : 138 - 145
  • [39] Enhancing Image Classification in Small and Unbalanced Datasets Through Synthetic Data Augmentation
    de la Fuente, Neil
    Majo, Mireia
    Luzko, Irina
    Cordova, Henry
    Fernandez-Esparrach, Gloria
    Bernal, Jorge
    CLINICAL IMAGE-BASED PROCEDURES, CLIP 2024, 2024, 15196 : 11 - 21
  • [40] A Survey of Automated Data Augmentation for Image Classification: Learning to Compose, Mix, and Generate
    Cheung, Tsz-Him
    Yeung, Dit-Yan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13185 - 13205