Enhancing automated strabismus classification with limited data: Data augmentation using StyleGAN2-ADA

被引:1
|
作者
Joo, Jaehan [1 ]
Kim, Sang Yoon [2 ,3 ]
Kim, Donghwan [1 ]
Lee, Ji-Eun [2 ,3 ]
Lee, Seung Min [2 ,3 ]
Suh, Su Youn [2 ,3 ]
Kim, Su-Jin [2 ,3 ]
Kim, Suk Chan [1 ]
机构
[1] Pusan Natl Univ, Dept Elect Engn, Busan, South Korea
[2] Pusan Natl Univ, Dept Ophthalmol, Sch Med, Yangsan, South Korea
[3] Pusan Natl Univ, Yangsan Hosp, Res Inst Convergence Biomed Sci & Technol, Yangsan, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
PREVALENCE; AMBLYOPIA; CHILDREN;
D O I
10.1371/journal.pone.0303355
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we propose a generative data augmentation technique to overcome the challenges of severely limited data when designing a deep learning-based automated strabismus diagnosis system. We implement a generative model based on the StyleGAN2-ADA model for system design and assess strabismus classification performance using two classifiers. We evaluate the capability of our proposed method against traditional data augmentation techniques and confirm a substantial enhancement in performance. Furthermore, we conduct experiments to explore the relationship between the diagnosis agreement among ophthalmologists and the generation performance of the generative model. Beyond FID, we validate the generative samples on the classifier to establish their practicality. Through these experiments, we demonstrate that the generative model-based data augmentation improves overall quantitative performance in scenarios of extreme data scarcity and effectively mitigates overfitting issues during deep learning model training.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A freshwater algae classification system based on machine learning with StyleGAN2-ADA augmentation for limited and imbalanced datasets
    Chan, Wang Hin
    Fung, Benjamin S. B.
    Tsang, Danny H. K.
    Lo, Irene M. C.
    WATER RESEARCH, 2023, 243
  • [2] Generating Synthetic Sperm Whale Voice Data Using StyleGAN2-ADA
    Kopets, Ekaterina
    Shpilevaya, Tatiana
    Vasilchenko, Oleg
    Karimov, Artur
    Butusov, Denis
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)
  • [3] Abdominal MRI Synthesis using StyleGAN2-ADA
    Goncalves, Bernardo
    Vieira, Pedro
    Vieira, Ana
    2023 IST-AFRICA CONFERENCE, IST-AFRICA, 2023,
  • [4] Wildfire Smoke Detection Enhanced by Image Augmentation with StyleGAN2-ADA for YOLOv8 and RT-DETR Models
    Park, Ganghyun
    Lee, Yangwon
    FIRE-SWITZERLAND, 2024, 7 (10):
  • [5] Automated Data Augmentation for Audio Classification
    Sun, Yanjie
    Xu, Kele
    Liu, Chaorun
    Dou, Yong
    Wang, Huaimin
    Ding, Bo
    Pan, Qinghua
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 2716 - 2728
  • [6] Enhancing Nanophotonic Device Inverse Design Through a Class Conditional Generative Adversarial Network with Integrated Classifier on StyleGAN2-ADA Framework
    Gu, Chanhoe
    Baek, Sun Jae
    Lee, Minhyeok
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 316 - 320
  • [7] AutoGDA: Automated Graph Data Augmentation for Node Classification
    Zhao, Tong
    Tang, Xianfeng
    Zhang, Danqing
    Jiang, Haoming
    Rao, Nikhil
    Song, Yiwei
    Agrawal, Pallav
    Subbian, Karthik
    Yin, Bing
    Jiang, Meng
    LEARNING ON GRAPHS CONFERENCE, VOL 198, 2022, 198
  • [8] Data augmentation for automated pest classification in Mango farms
    Kusrini, Kusrini
    Suputa, Suputa
    Setyanto, Arief
    Agastya, Artha
    Priantoro, Herlambang
    Chandramouli, Krishna
    Izquierdo, Ebroul
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 179 (179)
  • [9] Data Augmentation in Logit Space for Medical Image Classification with Limited Training Data
    Hu, Yangwen
    Zhong, Zhehao
    Wang, Ruixuan
    Liu, Hongmei
    Tan, Zhijun
    Zheng, Wei-Shi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 469 - 479
  • [10] Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification
    Hung, Shih-Kai
    Gan, John Q.
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3350 - 3356