Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach

被引:0
|
作者
Nelson, S. Patrick [1 ]
Raja, R. [2 ,3 ]
Eswaran, P. [4 ]
Alzabut, J. [5 ,6 ]
Rajchakit, G. [7 ]
机构
[1] Alagappa Univ, Dept Ind Chem, Karaikkudi 630004, India
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, India
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Alagappa Univ, Dept Comp Applicat, Karaikkudi 630004, India
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12435, Saudi Arabia
[6] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[7] Maejo Univ, Dept Math & Stat, Chiang Mai, Thailand
关键词
Mathematical modeling; Equilibrium point; Machine learning; Deep learning; Physics informed neural network; MALARIA;
D O I
10.1007/s13042-024-02301-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to build the SVIHRD model for COVID-19 and it also simultaneously conduct stability and numerical analysis on the transmission of COVID-19. Here we do a mathematical analysis for the SVIHRD model, which involves positivity, boundedness, uniqueness, and proving both global and local stability. In the process of numerical simulation, we use real-world data for COVID-19 cases in Japan. An important feature presents in this paper, is that we replace the usual numerical solving technique for obtaining the parameters with a Physics Informed Neural Network (PINN). This PINN needs an order of time instances as input and the number of Susceptible (S), Vaccinated (V), Infected (I), Hospitalized (H), Recovered (R), and Death (D) people per time instances to learn specific parameters of the model using loss functions. We developed three different PINN setups-the baseline model, configuration-I, and configuration-II-to explore and optimize these parameters for modeling COVID-19 dynamics in Japan. During the validation process, we evaluated how well the learned parameters from these three PINN architectures predicted real infection data for the next two months. The baseline model, with four hidden layers and 32 neurons each, performed well with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} value of 0.8038 and a Wilcoxon signed-rank test p value of 0.001556, closely matching actual infection data. A sensitivity analysis of the baseline model's parameters showed that the vaccination rate sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} is the most sensitive.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] From SIR to SEAIRD: A novel data-driven modeling approach based on the Grey-box System Theory to predict the dynamics of COVID-19
    Pekpe, K. Midzodzi
    Zitouni, Djamel
    Gasso, Gilles
    Dhifli, Wajdi
    Guinhouya, Benjamin C.
    [J]. APPLIED INTELLIGENCE, 2022, 52 (01) : 71 - 80
  • [42] Data-driven modeling of COVID-19-Lessons learned
    Kuhl, Ellen
    [J]. EXTREME MECHANICS LETTERS, 2020, 40
  • [43] From SIR to SEAIRD: A novel data-driven modeling approach based on the Grey-box System Theory to predict the dynamics of COVID-19
    K. Midzodzi Pekpe
    Djamel Zitouni
    Gilles Gasso
    Wajdi Dhifli
    Benjamin C. Guinhouya
    [J]. Applied Intelligence, 2022, 52 : 71 - 80
  • [44] Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis
    Fang, Yaqing
    Nie, Yiting
    Penny, Marshare
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (06) : 645 - 659
  • [45] A Data-Driven Simulation of Ukrainian Refugee Flows Impact on COVID-19 Dynamics in the UK
    Chumachenko, Dmytro
    Chomko, Vasyl
    Meniailov, Ievgen
    Krivtsov, Serhii
    Padalko, Halyna
    [J]. 6TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2023, 2023, 3609
  • [46] Data-Driven Deep-Learning Algorithm for Asymptomatic COVID-19 Model with Varying Mitigation Measures and Transmission Rate
    Olumoyin, K. D.
    Khaliq, A. Q. M.
    Furati, K. M.
    [J]. EPIDEMIOLOGIA, 2021, 2 (04): : 471 - 489
  • [47] Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis
    Hye M.A.
    Biswas M.A.H.A.
    Uddin M.F.
    Saifuddin M.
    [J]. Computational Mathematics and Modeling, 2022, 33 (2) : 173 - 192
  • [48] Localized Motion Dynamics Modeling of A Soft Robot: A Data-Driven Adaptive Learning Approach
    Chen, Xiaotian
    Stegagno, Paolo
    Zeng, Wei
    Yuan, Chengzhi
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2644 - 2649
  • [49] Deep Learning Framework for Data-driven Soft Sensor Modeling
    Yang, Yinghua
    Feng, Jiajun
    Liu, Xiaozhi
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 918 - 922
  • [50] Dynamics of COVID-19 transmission with comorbidity: a data driven modelling based approach
    Das, Parthasakha
    Nadim, Sk Shahid
    Das, Samhita
    Das, Pritha
    [J]. NONLINEAR DYNAMICS, 2021, 106 (02) : 1197 - 1211