Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach

被引:0
|
作者
Nelson, S. Patrick [1 ]
Raja, R. [2 ,3 ]
Eswaran, P. [4 ]
Alzabut, J. [5 ,6 ]
Rajchakit, G. [7 ]
机构
[1] Alagappa Univ, Dept Ind Chem, Karaikkudi 630004, India
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, India
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Alagappa Univ, Dept Comp Applicat, Karaikkudi 630004, India
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12435, Saudi Arabia
[6] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[7] Maejo Univ, Dept Math & Stat, Chiang Mai, Thailand
关键词
Mathematical modeling; Equilibrium point; Machine learning; Deep learning; Physics informed neural network; MALARIA;
D O I
10.1007/s13042-024-02301-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to build the SVIHRD model for COVID-19 and it also simultaneously conduct stability and numerical analysis on the transmission of COVID-19. Here we do a mathematical analysis for the SVIHRD model, which involves positivity, boundedness, uniqueness, and proving both global and local stability. In the process of numerical simulation, we use real-world data for COVID-19 cases in Japan. An important feature presents in this paper, is that we replace the usual numerical solving technique for obtaining the parameters with a Physics Informed Neural Network (PINN). This PINN needs an order of time instances as input and the number of Susceptible (S), Vaccinated (V), Infected (I), Hospitalized (H), Recovered (R), and Death (D) people per time instances to learn specific parameters of the model using loss functions. We developed three different PINN setups-the baseline model, configuration-I, and configuration-II-to explore and optimize these parameters for modeling COVID-19 dynamics in Japan. During the validation process, we evaluated how well the learned parameters from these three PINN architectures predicted real infection data for the next two months. The baseline model, with four hidden layers and 32 neurons each, performed well with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} value of 0.8038 and a Wilcoxon signed-rank test p value of 0.001556, closely matching actual infection data. A sensitivity analysis of the baseline model's parameters showed that the vaccination rate sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} is the most sensitive.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A framework for data-driven solutions with covid-19 illustrations
    Mwitondi K.S.
    Said R.A.
    [J]. Data Science Journal, 2021, 20 (01)
  • [32] Data-driven optimized control of the COVID-19 epidemics
    Shirin, Afroza
    Lin, Yen Ting
    Sorrentino, Francesco
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Data-Driven COVID-19 Vaccine Development for Janssen
    Bertsimas, Dimitris
    Li, Michael Lingzhi
    Liu, Xinggang
    Xu, Jennings
    Khan, Najat
    [J]. INFORMS JOURNAL ON APPLIED ANALYTICS, 2023, 53 (01): : 70 - 84
  • [34] COVID-19 Critical Illness: A Data-Driven Review
    Ginestra, Jennifer C.
    Mitchell, Oscar J. L.
    Anesi, George L.
    Christie, Jason D.
    [J]. ANNUAL REVIEW OF MEDICINE, 2022, 73 : 95 - 111
  • [35] Data-driven optimized control of the COVID-19 epidemics
    Afroza Shirin
    Yen Ting Lin
    Francesco Sorrentino
    [J]. Scientific Reports, 11
  • [36] Forecasting COVID-19 pandemic: A data-driven analysis
    Nabi, Khondoker Nazmoon
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139
  • [37] Smart cities and a data-driven response to COVID-19
    James, Philip
    Das, Ronnie
    Jalosinska, Agata
    Smith, Luke
    [J]. DIALOGUES IN HUMAN GEOGRAPHY, 2020, 10 (02) : 255 - 259
  • [38] A novel data-driven deep learning approach for wind turbine power curve modeling
    Wang, Yun
    Duan, Xiaocong
    Zou, Runmin
    Zhang, Fan
    Li, Yifen
    Hu, Qinghua
    [J]. ENERGY, 2023, 270
  • [39] Assessing the impact of data-driven limitations on tracing and forecasting the outbreak dynamics of COVID-19
    Fiscon, Giulia
    Salvadore, Francesco
    Guarrasi, Valerio
    Garbuglia, Anna Rosa
    Paci, Paola
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [40] Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant
    Cai, Min
    Em Karniadakis, George
    Li, Changpin
    [J]. CHAOS, 2022, 32 (07)