Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach

被引:0
|
作者
Nelson, S. Patrick [1 ]
Raja, R. [2 ,3 ]
Eswaran, P. [4 ]
Alzabut, J. [5 ,6 ]
Rajchakit, G. [7 ]
机构
[1] Alagappa Univ, Dept Ind Chem, Karaikkudi 630004, India
[2] Alagappa Univ, Ramanujan Ctr Higher Math, Karaikkudi 630004, India
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Alagappa Univ, Dept Comp Applicat, Karaikkudi 630004, India
[5] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12435, Saudi Arabia
[6] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[7] Maejo Univ, Dept Math & Stat, Chiang Mai, Thailand
关键词
Mathematical modeling; Equilibrium point; Machine learning; Deep learning; Physics informed neural network; MALARIA;
D O I
10.1007/s13042-024-02301-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to build the SVIHRD model for COVID-19 and it also simultaneously conduct stability and numerical analysis on the transmission of COVID-19. Here we do a mathematical analysis for the SVIHRD model, which involves positivity, boundedness, uniqueness, and proving both global and local stability. In the process of numerical simulation, we use real-world data for COVID-19 cases in Japan. An important feature presents in this paper, is that we replace the usual numerical solving technique for obtaining the parameters with a Physics Informed Neural Network (PINN). This PINN needs an order of time instances as input and the number of Susceptible (S), Vaccinated (V), Infected (I), Hospitalized (H), Recovered (R), and Death (D) people per time instances to learn specific parameters of the model using loss functions. We developed three different PINN setups-the baseline model, configuration-I, and configuration-II-to explore and optimize these parameters for modeling COVID-19 dynamics in Japan. During the validation process, we evaluated how well the learned parameters from these three PINN architectures predicted real infection data for the next two months. The baseline model, with four hidden layers and 32 neurons each, performed well with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>{2}$$\end{document} value of 0.8038 and a Wilcoxon signed-rank test p value of 0.001556, closely matching actual infection data. A sensitivity analysis of the baseline model's parameters showed that the vaccination rate sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} is the most sensitive.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A population data-driven workflow for COVID-19 modeling and learning
    Ozik, Jonathan
    Wozniak, Justin M.
    Collier, Nicholson
    Macal, Charles M.
    Binois, Mickael
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (05): : 483 - 499
  • [2] Data-driven analysis and predictive modeling on COVID-19
    Sharma, Sonam
    Alsmadi, Izzat
    Alkhawaldeh, Rami S.
    Al-Ahmad, Bilal
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (28):
  • [3] Temporal Dynamics of COVID-19 Outbreak and Future Projections: A Data-Driven Approach
    Rajesh Ranjan
    [J]. Transactions of the Indian National Academy of Engineering, 2020, 5 (2) : 109 - 115
  • [4] Data-Driven Control of COVID-19 in Buildings: A Reinforcement-Learning Approach
    Hosseinloo, Ashkan Haji
    Nabi, Saleh
    Hosoi, Anette
    Dahleh, Munther A.
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 21 (04) : 1 - 0
  • [5] Tackling the COVID-19 Conspiracies: The Data-Driven Approach
    Petrovic, Nenad
    [J]. 2020 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (IEEE ICEST 2020), 2020, : 27 - 30
  • [6] Identification and prediction of time-varying parameters of COVID-19 model: a data-driven deep learning approach
    Long, Jie
    Khaliq, A. Q. M.
    Furati, K. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (08) : 1617 - 1632
  • [7] Data-driven mathematical modeling approaches for COVID-19: A survey
    Demongeot, Jacques
    Magal, Pierre
    [J]. PHYSICS OF LIFE REVIEWS, 2024, 50 : 166 - 208
  • [8] An evaluation of COVID-19 in Italy: A data-driven modeling analysis
    Ding, Yongmei
    Gao, Liyuan
    [J]. INFECTIOUS DISEASE MODELLING, 2020, 5 : 495 - 501
  • [9] Assessing the dynamics and impact of COVID-19 vaccination on disease spread: A data-driven approach
    Waseel, Farhad
    Streftaris, George
    Rudrusamy, Bhuvendhraa
    Dass, Sarat C.
    [J]. INFECTIOUS DISEASE MODELLING, 2024, 9 (02) : 527 - 556
  • [10] Data-Driven Prediction of COVID-19 Daily New Cases through a Hybrid Approach of Machine Learning Unsupervised and Deep Learning
    Manuel Ramirez-Alcocer, Ulises
    Tello-Leal, Edgar
    Macias-Hernandez, Barbara A.
    David Hernandez-Resendiz, Jaciel
    [J]. ATMOSPHERE, 2022, 13 (08)