Performance Analysis for Resource Constrained Decentralized Federated Learning Over Wireless Networks

被引:3
|
作者
Yan, Zhigang [1 ]
Li, Dong [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau, Peoples R China
关键词
Decentralized federated learning; resource constraint; package error; fading channel; CONVERGENCE; ALGORITHM;
D O I
10.1109/TCOMM.2024.3362143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) can generate huge communication overhead for the central server, which may cause operational challenges. Furthermore, the central server's failure or compromise may result in a breakdown of the entire system. To mitigate this issue, decentralized federated learning (DFL) has been proposed as a more resilient framework that does not rely on a central server, as demonstrated in previous works. DFL involves the exchange of parameters between each device through a wireless network. To optimize the communication efficiency of the DFL system, various transmission schemes have been proposed and investigated. However, the limited communication resources present a significant challenge for these schemes. Therefore, to explore the impact of constrained resources, such as computation and communication costs on the DFL, this study analyzes the model performance of resource-constrained DFL using different communication schemes (digital and analog) over wireless networks. Specifically, we provide convergence bounds for both digital and analog transmission approaches, enabling analysis of the model performance trained on DFL. Furthermore, for digital transmission, we investigate and analyze resource allocation between computation and communication and convergence rates, obtaining its communication complexity and the minimum probability of correction communication required for convergence guarantee. For analog transmission, we discuss the impact of channel fading and noise on the model performance and the maximum errors accumulation with convergence guarantee over fading channels. Finally, we conduct numerical simulations to evaluate the performance and convergence rate of convolutional neural networks (CNNs) and Vision Transformer (ViT) trained in the DFL framework on fashion-MNIST and CIFAR-10 datasets. Our simulation results validate our analysis and discussion, revealing how to improve performance by optimizing system parameters under different communication conditions.
引用
收藏
页码:4084 / 4100
页数:17
相关论文
共 50 条
  • [21] AdaptiveMesh: Adaptive Federated Learning for Resource-Constrained Wireless Environments
    Shkurti, Lamir
    Selimi, Mennan
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (14) : 22 - 37
  • [22] Decentralized Federated Learning Over Slotted ALOHA Wireless Mesh Networking
    Salama, Abdelaziz
    Stergioulis, Achilleas
    Hayajneh, Ali M.
    Zaidi, Syed Ali Raza
    McLernon, Des
    Robertson, Ian
    IEEE ACCESS, 2023, 11 : 18326 - 18342
  • [23] Adaptive Hierarchical Federated Learning Over Wireless Networks
    Xu, Bo
    Xia, Wenchao
    Wen, Wanli
    Liu, Pei
    Zhao, Haitao
    Zhu, Hongbo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2070 - 2083
  • [24] Asynchronous Federated Learning over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Wang, Jue
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [25] An Overview of Enabling Federated Learning over Wireless Networks
    Foukalas, Fotis
    Tziouvaras, Athanasios
    Tsiftsis, Theodoros A.
    2021 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE MEDITCOM 2021), 2021, : 271 - 276
  • [26] Federated Learning Over Energy Harvesting Wireless Networks
    Hamdi, Rami
    Chen, Mingzhe
    Ben Said, Ahmed
    Qaraqe, Marwa
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 92 - 103
  • [27] Federated Learning Over Wireless Networks: Challenges and Solutions
    Beitollahi, Mahdi
    Lu, Ning
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (16) : 14749 - 14763
  • [28] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [29] Resource Allocation for Multi-Task Federated Learning Algorithm over Wireless Communication Networks
    Cao, Binghao
    Chen, Ming
    Ben, Yanglin
    Yang, Zhaohui
    Hu, Yuntao
    Huang, Chongwen
    Cang, Yihan
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 590 - 595
  • [30] Efficient Parallel Split Learning Over Resource-Constrained Wireless Edge Networks
    Lin, Zheng
    Zhu, Guangyu
    Deng, Yiqin
    Chen, Xianhao
    Gao, Yue
    Huang, Kaibin
    Fang, Yuguang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9224 - 9239