Federated Learning Over Wireless Networks: Challenges and Solutions

被引:7
|
作者
Beitollahi, Mahdi [1 ]
Lu, Ning [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
关键词
Communication resources; federated learning (FL); power limitation; wireless networks; STOCHASTIC GRADIENT DESCENT; PRIVACY; OPTIMIZATION; CONVERGENCE; FRAMEWORK; SECURITY;
D O I
10.1109/JIOT.2023.3285868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by ever-increasing computational resources at edge devices and increasing privacy concerns, a new machine learning (ML) framework called federated learning (FL) has been proposed. FL enables user devices, such as mobile and Internet of Things (IoT) devices, to collaboratively train an ML model by only sending the model parameters instead of raw data. FL is considered the key enabling approach for privacy-preserving, distributed ML systems. However, FL requires frequent exchange of learned model updates between multiple user devices and the cloud/edge server, which introduces a significant communication overhead and hence imposes a major challenge in FL over wireless networks that are limited in communication resources. Moreover, FL consumes a considerable amount of energy in the process of transmitting learned model updates, which imposes another challenge in FL over wireless networks that usually include unplugged devices with limited battery resources. Besides, there are still other privacy issues in practical implementations of FL over wireless networks. In this survey, we discuss each of the mentioned challenges and their respective state-of-the-art proposed solutions in an in-depth manner. By illustrating the tradeoff between each of the solutions, we discuss the underlying effect of the wireless network on the performance of FL. Finally, by highlighting the gaps between research and practical implementations, we identify future research directions for engineering FL over wireless networks.
引用
下载
收藏
页码:14749 / 14763
页数:15
相关论文
共 50 条
  • [1] Toward Scalable Wireless Federated Learning: Challenges and Solutions
    Zhou Y.
    Shi Y.
    Zhou H.
    Wang J.
    Fu L.
    Yang Y.
    IEEE Internet of Things Magazine, 2023, 6 (04): : 10 - 16
  • [2] Adaptive Hierarchical Federated Learning Over Wireless Networks
    Xu, Bo
    Xia, Wenchao
    Wen, Wanli
    Liu, Pei
    Zhao, Haitao
    Zhu, Hongbo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2070 - 2083
  • [3] Asynchronous Federated Learning over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Wang, Jue
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [4] An Overview of Enabling Federated Learning over Wireless Networks
    Foukalas, Fotis
    Tziouvaras, Athanasios
    Tsiftsis, Theodoros A.
    2021 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE MEDITCOM 2021), 2021, : 271 - 276
  • [5] Federated Learning Over Energy Harvesting Wireless Networks
    Hamdi, Rami
    Chen, Mingzhe
    Ben Said, Ahmed
    Qaraqe, Marwa
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 92 - 103
  • [6] Performance Optimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [7] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [8] A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) : 269 - 283
  • [9] Decentralized Federated Learning on the Edge Over Wireless Mesh Networks
    Salama, Abdelaziz
    Stergioulis, Achilleas
    Zaidi, Syed Ali Raza
    McLernon, Des
    IEEE ACCESS, 2023, 11 : 124709 - 124724
  • [10] Convergence Time Minimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,