Approximate equivalence of representations of AH algebras into semifinite von Neumann factors

被引:0
|
作者
Shen, Junhao [1 ]
Shi, Rui [2 ]
机构
[1] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Weyl-von Neumann theorem; approximately unitary equivalence; AH algebras; semifinite von Neumann factors; ideals; C-ASTERISK-ALGEBRAS; FREDHOLM THEORIES; CLASSIFICATION; THEOREM;
D O I
10.4171/JNCG/554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a non-commutative version of the Weyl-von Neumann theorem for representations of unital, separable AH algebras into countably decomposable, semifinite, properly infinite, von Neumann factors, where an AH algebra means an approximately homogeneous C *-algebra. We also prove a result for approximate summands of representations of unital, separable AH algebras into finite von Neumann factors.
引用
收藏
页码:1315 / 1348
页数:34
相关论文
共 50 条