The local index formula in semifinite von Neumann algebras II: The even case

被引:42
|
作者
Carey, Alan L.
Phillips, John
Rennie, Adam
Sukochev, Fyodor A.
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[4] Flinders Univ S Australia, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
von Neumann algebra; Fredholm module; cyclic cohomology; Chern character; McKean-Singer formula;
D O I
10.1016/j.aim.2005.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise the even local index formula of Connes and Moscovici to the case of spectral triples for a *-subalgebra A of a general semifinite von Neumann algebra. The proof is a variant of that for the odd case which appears in Part I. To allow for algebras with a non-trivial centre we have to establish a theory of unbounded Fredholm operators in a general semifinite von Neumann algebra and in particular prove a generalised McKean-Singer formula. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:517 / 554
页数:38
相关论文
共 50 条