Vitessce: integrative visualization of multimodal and spatially resolved single-cell data

被引:0
|
作者
Keller, Mark S. [1 ]
Gold, Ilan [1 ]
McCallum, Chuck [1 ]
Manz, Trevor [1 ]
Kharchenko, Peter V. [1 ,2 ,3 ]
Gehlenborg, Nils [1 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA USA
[3] Altos Labs, San Diego, CA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENOME-WIDE EXPRESSION;
D O I
10.1038/s41592-024-02436-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Multiomics technologies with single-cell and spatial resolution make it possible to measure thousands of features across millions of cells. However, visual analysis of high-dimensional transcriptomic, proteomic, genome-mapped and imaging data types simultaneously remains a challenge. Here we describe Vitessce, an interactive web-based visualization framework for exploration of multimodal and spatially resolved single-cell data. We demonstrate integrative visualization of millions of data points, including cell-type annotations, gene expression quantities, spatially resolved transcripts and cell segmentations, across multiple coordinated views. The open-source software is available at http://vitessce.io. Vitessce is a robust and versatile web-based framework for interactive visualization of large-scale multiomics and spatial data at the single-cell level.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A model-based constrained deep learning clustering approach for spatially resolved single-cell data
    Lin, Xiang
    Gao, Le
    Whitener, Nathan
    Ahmed, Ashley
    Wei, Zhi
    [J]. GENOME RESEARCH, 2022, 32 (10) : 1906 - 1917
  • [42] Computational methods for the integrative analysis of single-cell data
    Forcato, Mattia
    Romano, Oriana
    Bicciato, Silvio
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03) : 20 - 29
  • [43] De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution
    Jie Liao
    Jingyang Qian
    Yin Fang
    Zhuo Chen
    Xiang Zhuang
    Ningyu Zhang
    Xin Shao
    Yining Hu
    Penghui Yang
    Junyun Cheng
    Yang Hu
    Lingqi Yu
    Haihong Yang
    Jinlu Zhang
    Xiaoyan Lu
    Li Shao
    Dan Wu
    Yue Gao
    Huajun Chen
    Xiaohui Fan
    [J]. Nature Communications, 13
  • [44] De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution
    Liao, Jie
    Qian, Jingyang
    Fang, Yin
    Chen, Zhuo
    Zhuang, Xiang
    Zhang, Ningyu
    Shao, Xin
    Hu, Yining
    Yang, Penghui
    Cheng, Junyun
    Hu, Yang
    Yu, Lingqi
    Yang, Haihong
    Zhang, Jinlu
    Lu, Xiaoyan
    Shao, Li
    Wu, Dan
    Gao, Yue
    Chen, Huajun
    Fan, Xiaohui
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [45] Clustering single-cell multimodal omics data with jrSiCKLSNMF
    Ellis, Dorothy
    Roy, Arkaprava
    Datta, Susmita
    [J]. FRONTIERS IN GENETICS, 2023, 14
  • [46] Comparison of visualization tools for single-cell RNAseq data
    Cakir, Batuhan
    Prete, Martin
    Huang, Ni
    van Dongen, Stijn
    Pir, Pinar
    Kiselev, Vladimir Yu
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (03)
  • [47] Unbiased visualization of single-cell genomic data with SCUBI
    Hou, Wenpin
    Ji, Zhicheng
    [J]. CELL REPORTS METHODS, 2022, 2 (01):
  • [48] Short talk Nanoscale tweezers for spatially resolved single-cell subcellular analysis
    Sahota, Annie
    Nadappuram, Binoy Paulose
    Devine, Michael
    Ivanov, Aleksandar
    Edel, Joshua
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S31 - S31
  • [49] A SINGLE-CELL SPATIALLY RESOLVED MERFISH MAP OF THE COLORECTAL TUMOR IMMUNE MICROENVIRONMENT
    Price, Colles
    Chen, Jonathan
    Pelka, Karin
    Chao, Sherry
    He, Jiang
    Boland, Genevieve
    Emanuel, George
    Hacohen, Nir
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A965 - A965
  • [50] Spatially resolved single-cell analysis of cellular plasticity and mechanisms of drug resistance
    Pitchiaya, Sethuramasundaram
    D'silva, Jeremy
    Lee, Nicole
    Narayanan, Sathiyapandi
    Jiang, Xia
    Dhanasekaran, Saravana M.
    Chinnaiyan, Arul M.
    [J]. CANCER RESEARCH, 2018, 78 (13)