Recycling Silicon Cutting Waste from Photovoltaic Industry into High-Performance Anodes for Lithium-Ion Batteries

被引:0
|
作者
Zhang, Chuanlong [1 ]
Li, Jianjiang [1 ]
Feng, Yuanyong [2 ]
Du, Guanhua [1 ]
Liu, Yuxiao [1 ]
Wang, Ying [3 ]
Wang, Yun [4 ]
Wu, Zhenzhen [4 ]
Yang, Pan [4 ]
Nanjundan, Ashok Kumar [6 ]
Yang, Kerong [5 ]
Zhu, Xiaoyi [1 ]
Zhang, Lei [4 ]
机构
[1] Qingdao Univ, Sch Environm Sci & Engn, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Affiliated Hosp, Dept Oral & Maxillofacial Surg, Qingdao 266003, Shandong, Peoples R China
[3] Jiangsu Normal Univ, Sch Chem & Mat Sci, Xuzhou 221116, Jiangsu, Peoples R China
[4] Griffith Univ, Ctr Catalysis & Clean Energy, Gold Coast Campus, Southport, Qld 4222, Australia
[5] Qingdao Inst Text Fiber Supervis & Inspect, Qingdao 266061, Shandong, Peoples R China
[6] Univ Southern Queensland, Ctr Future Mat, Sch Engn, Springfield, Qld 4300, Australia
来源
基金
澳大利亚研究理事会;
关键词
anode materials; photovoltaic silicon waste; waste recycling; electrostatic spinning; lithium-ionbatteries; ELECTROCHEMICAL IMPEDANCE; COMPOSITE; GRAPHENE; NANOFIBERS;
D O I
10.1021/acssuschemeng.4c05566
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photovoltaic (PV) industry annually generates substantial quantities of silicon cutting waste (SCW), posing significant environmental pressure and leading to considerable resource wastage. To address this issue and capitalize on wasted high-purity silicon, a novel, highly dispersed Si-based composite from SCW was developed for use as a high-performance anode in lithium-ion batteries. This study presents a novel approach for the fabrication of a composite material comprising SCW-derived silicon nanoparticles (SiNPs) and carbon nanotubes (CNTs) embedded within a carbon nanofiber (CNFs) network (Si/CNTs@CNFs). SCW was subjected to acid washing, high-temperature pyrolysis, and ball milling to produce nanoscale SiNPs. These SiNPs were then mixed with CNTs to produce Si/CNTs@CNFs via a modified electrospinning process, in which poly(vinylpyrrolidone) (PVP) was used as a stabilizing agent to prevent the agglomeration of SiNPs. This ensured that both SiNPs and CNTs were uniformly dispersed throughout the interconnected CNFs, leading to enhanced electrical conductivity, improved structural stability, and better electrochemical performance for this Si-based anode. The highly dispersed Si/CNTs@CNFs composite material exhibits a reversible capacity of 571.5 mAh g(-1) after 200 cycles at a current density of 1 A g(-1), showcasing superior electrical performance compared to samples without PVP or without ball milling. This study presents a novel pathway for recycling silicon cutting waste from the solar PV industry, thereby contributing to sustainability and the advancement of renewable energy resources.
引用
收藏
页码:14099 / 14108
页数:10
相关论文
共 50 条
  • [21] A Design Strategy of Carbon Coatings on Silicon Nanoparticles as Anodes of High-Performance Lithium-Ion Batteries
    Tan, Wen
    Yang, Fan
    Lu, Zhouguang
    Xu, Zhenghe
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12143 - 12150
  • [22] Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries
    Yang, Na
    Sun, Junhui
    Shao, Rong
    Cao, Zhenjiang
    Zhang, Zhengping
    Dou, Meiling
    Niu, Jin
    Wang, Feng
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (05):
  • [23] Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries
    Zhang, Yaguang
    Du, Ning
    Yang, Deren
    NANOSCALE, 2019, 11 (41) : 19086 - 19104
  • [24] Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries
    Li, Ling
    Qin, Rongrong
    Zhan, Ruoning
    Tu, Chenggang
    Liu, Xuanli
    Liu, Leibin
    Deng, Lingfeng
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [25] Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes
    Zhang, Chaofan
    Ma, Qiang
    Cai, Muya
    Zhao, Zhuqing
    Xie, Hongwei
    Ning, Zhiqiang
    Wang, Dihua
    Yin, Huayi
    WASTE MANAGEMENT, 2021, 135 : 182 - 189
  • [26] Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes
    Zhang, Chaofan
    Ma, Qiang
    Cai, Muya
    Zhao, Zhuqing
    Xie, Hongwei
    Ning, Zhiqiang
    Wang, Dihua
    Yin, Huayi
    Waste Management, 2021, 135 : 182 - 189
  • [27] A β-FeOOH/MXene sandwich for high-performance anodes in lithium-ion batteries
    He, Lu
    Tan, Chuan
    Sheng, Chuanchao
    Chen, Yuanzhao
    Yu, Fengjiao
    Chen, Yuhui
    DALTON TRANSACTIONS, 2020, 49 (27) : 9268 - 9273
  • [28] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [29] Constructing Si@CN@MXene from silicon waste as high-performance lithium-ion battery anodes
    Li, Xiang
    Li, Kefan
    Yuan, Liang
    Han, Zewen
    Li, Mengkui
    Yan, Zexuan
    Xu, Xiaohua
    Tang, Kai
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [30] Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Zeng, Wenwu
    Wang, Lei
    Peng, Xiang
    Liu, Tiefeng
    Jiang, Youyu
    Qin, Fei
    Hu, Lin
    Chu, Paul K.
    Huo, Kaifu
    Zhou, Yinhua
    ADVANCED ENERGY MATERIALS, 2018, 8 (11)