Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries

被引:0
|
作者
Li, Ling [1 ]
Qin, Rongrong [1 ]
Zhan, Ruoning [2 ]
Tu, Chenggang [3 ]
Liu, Xuanli [1 ]
Liu, Leibin [1 ]
Deng, Lingfeng [1 ,4 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha, Peoples R China
[3] Changde Coll Sci & Technol, Changde, Peoples R China
[4] Hunan Prov Key Lab Mat Surface & Interface Sci & T, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon-based materials; Sulfonated polyacrylonitrile; Graphite; Lithium-ion batteries; HIGH-ENERGY; NANOPARTICLES; CONSTRUCTION; PROGRESS; SPECTRA; WASTE;
D O I
10.1016/j.est.2024.113196
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon-based materials are considered among the most promising anode materials for the next generation of lithium-ion batteries due to their abundant reserves, high theoretical capacity, and lower discharge potentials. However, the poor conductivity, significant volume expansion, and severe capacity fading of silicon hinder its commercial application. The synergistic use of silicon and graphite is an effective way to address these issues but faces problems such as persistent interface and structural stability challenges. This study employs sulfur-doped carbon derived from sulfonated polyacrylonitrile to encapsulate silicon, with graphite serving as the conductive medium. Through a combined wet chemical and pyrolysis process, we synthesized Si@SPANdC/Gr composite materials with superior electrochemical performance. The 3gSi@SPANdC/Gr composite anode material, containing a low silicon content (similar to 19.1 wt%), demonstrated a reversible capacity of 628.8 mAh g(-1) at a current density of 0.2 A g(-1) over 200 cycles, with an initial Coulombic efficiency of 71.28 %. Even at a higher current density of 1 A g(-1), it maintained a relatively high reversible capacity of 516.8 mAh g(-1) after 400 cycles, indicating good cycle stability. In addition, a full cell assembled with the 3gSi@SPANdC/Gr anode and commercial LiCoO4 cathode also shows an impressive cycling performance. This research provides a low-cost and novel solution for the commercial application of high-performance silicon-based lithium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Purification of spent graphite and surface modification with amorphous carbons as anodes for high-performance lithium-ion batteries
    Hou, Yida
    Guo, Hui
    Xing, Baolin
    Zeng, Huihui
    Kang, Weiwei
    Qu, Xiaoxiao
    Zhang, Chuanxiang
    Jia, Jianbo
    Huang, Guangxu
    Cao, Yijun
    FUEL, 2024, 374
  • [2] Porous silicon/carbon composites as anodes for high-performance lithium-ion batteries
    Tian, Zhen-Yu
    Wang, Ya-Fei
    Qin, Xin
    Shaislamov, Ulugbek
    Hojamberdiev, Mirabbos
    Zheng, Tong-Hui
    Dong, Shuo
    Zhang, Xing-Hao
    Kong, De-Bin
    Zhi, Lin-Jie
    Xinxing Tan Cailiao/New Carbon Materials, 2024, 39 (05): : 992 - 1002
  • [3] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [4] A Design Strategy of Carbon Coatings on Silicon Nanoparticles as Anodes of High-Performance Lithium-Ion Batteries
    Tan, Wen
    Yang, Fan
    Lu, Zhouguang
    Xu, Zhenghe
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12143 - 12150
  • [5] Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries
    Yang, Na
    Sun, Junhui
    Shao, Rong
    Cao, Zhenjiang
    Zhang, Zhengping
    Dou, Meiling
    Niu, Jin
    Wang, Feng
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (05):
  • [6] Supramolecular polymers as high-performance binders for silicon anodes in lithium-ion batteries
    Coskun, Ali
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [7] Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries
    Chen, Yanli
    Hu, Yi
    Shao, Jianzhong
    Shen, Zhen
    Chen, Renzhong
    Zhang, Xiangwu
    He, Xia
    Song, Yuanze
    Xing, Xiuli
    JOURNAL OF POWER SOURCES, 2015, 298 : 130 - 137
  • [8] In situ synthesis of carbon doped porous silicon nanocomposites as high-performance anodes for lithium-ion batteries
    Chen, Yifan
    Bao, Liang
    Du, Ning
    Yang, Tao
    Mao, Qinan
    Lu, Xiaoxiao
    Lin, Yangfan
    Ji, Zhenguo
    NANOTECHNOLOGY, 2019, 30 (03)
  • [9] Novel binary regulated silicon-carbon materials as high-performance anodes for lithium-ion batteries
    He, Xinran
    Xiang, Xiaolin
    Pan, Piao
    Li, Peidong
    Cui, Yuehua
    NANOTECHNOLOGY, 2024, 35 (35)
  • [10] Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries
    An, Weili
    He, Peng
    Xiao, Chengmao
    Guo, Eming
    Pang, Chunlei
    He, Xueqin
    Ren, Jianguo
    Yuan, Guohui
    Du, Ning
    Yang, Deren
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4976 - 4985