BARMPy: Bayesian additive regression models Python']Python package

被引:0
|
作者
Van Boxel, Danielle [1 ,2 ]
机构
[1] Univ Arizona, Appl Math GIDP, Tucson, AZ 85721 USA
[2] Univ Arizona, Data Divers Lab, Tucson, AZ 85721 USA
关键词
Machine learning; !text type='Python']Python[!/text; MCMC; Software; MARKOV-CHAIN;
D O I
10.1007/s00180-024-01535-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We make Bayesian additive regression networks (BARN) available as a Python package, barmpy, with documentation at https://dvbuntu.github.io/barmpy/ for general machine learning practitioners. Our object-oriented design is compatible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease learning to use barmpy, we produce a companion tutorial that expands on reference information in the documentation. Any interested user can pip install barmpy from the official PyPi repository. barmpy also serves as a baseline Python library for generic Bayesian additive regression models.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] matplotlib - A portable python']python plotting package
    Barrett, P
    Hunter, J
    Miller, JT
    Hsu, JC
    Greenfield, P
    Astronomical Data Analysis Software and Systems XIV, Proceedings, 2005, 347 : 91 - 95
  • [32] TDCRPy: A python']python package for TDCR measurements
    Coulon, Romain
    Hu, Jialin
    APPLIED RADIATION AND ISOTOPES, 2024, 214
  • [33] The Multitaper Spectrum Analysis Package in Python']Python
    Prieto, German A.
    SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (03) : 1922 - 1929
  • [34] pyrichlet: A Python']Python Package for Density Estimation and Clustering Using Gaussian Mixture Models
    Selva, Fidel
    Fuentes-Garcia, Ruth
    Gil-Leyva, Maria Fernanda
    JOURNAL OF STATISTICAL SOFTWARE, 2025, 112 (08): : 1 - 39
  • [35] torchosr - A PyTorch extension package for Open Set Recognition models evaluation in Python']Python
    Komorniczak, Joanna
    Ksieniewicz, Pawel
    NEUROCOMPUTING, 2024, 566
  • [36] q-pac: A Python']Python package for machine learned charge equilibration models
    Vondrak, Martin
    Reuter, Karsten
    Margraf, Johannes T. T.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (05):
  • [37] HistoMIL: A Python']Python package for training multiple instance learning models on histopathology slides
    Pan, Shi
    Secrier, Maria
    ISCIENCE, 2023, 26 (10)
  • [38] sparsesurv: a Python']Python package for fitting sparse survival models via knowledge distillation
    Wissel, David
    Janakarajan, Nikita
    Schulte, Julius
    Rowson, Daniel
    Yuan, Xintian
    Boeva, Valentina
    BIOINFORMATICS, 2024, 40 (09)
  • [39] Linear Models with Python']Python
    Lipovetsky, Stan
    TECHNOMETRICS, 2021, 63 (03) : 426 - 427
  • [40] PyMC: Bayesian Stochastic Modelling in Python']Python
    Patil, Anand
    Huard, David
    Fonnesbeck, Christopher J.
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 35 (04): : 1 - 81