HistoMIL: A Python']Python package for training multiple instance learning models on histopathology slides

被引:3
|
作者
Pan, Shi [1 ]
Secrier, Maria [1 ]
机构
[1] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
AURORA;
D O I
10.1016/j.isci.2023.108073
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hematoxylin and eosin (H&E) stained slides are widely used in disease diagnosis. Remarkable advances in deep learning have made it possible to detect complex molecular patterns in these histopathology slides, suggesting automated approaches could help inform pathologists' decisions. Multiple instance learning (MIL) algorithms have shown promise in this context, outperforming transfer learning (TL) methods for various tasks, but their implementation and usage remains complex. We introduce HistoMIL, a Python package designed to streamline the implementation, training and inference process of MIL-based algorithms for computational pathologists and biomedical researchers. It integrates a self-supervised learning module for feature encoding, and a full pipeline encompassing TL and three MIL algorithms: ABMIL, DSMIL, and TransMIL. The PyTorch Lightning framework enables effortless customization and algorithm implementation. We illustrate HistoMIL's capabilities by building predictive models for 2,487 cancer hallmark genes on breast cancer histology slides, achieving AUROC performances of up to 85%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [2] BARMPy: Bayesian additive regression models Python']Python package
    Van Boxel, Danielle
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [3] TrustML: A Python']Python package for computing the trustworthiness of ML models
    Manzano, Marti
    Ayala, Claudia
    Gomez, Cristina
    [J]. SOFTWAREX, 2024, 26
  • [4] Modelly: An open source all in one python']python package for developing machine learning models
    Sarkar, Tushar
    Shah, Disha
    [J]. SOFTWARE IMPACTS, 2022, 14
  • [5] PsychRNN: An Accessible and Flexible Python']Python Package for Training Recurrent Neural Network Models on Cognitive Tasks
    Ehrlich, Daniel B.
    Stone, Jasmine T.
    Brandfonbrener, David
    Atanasov, Alexander
    Murray, John D.
    [J]. ENEURO, 2021, 8 (01) : 1 - 11
  • [6] Seglearn: A Python']Python Package for Learning Sequences and Time Series
    Burns, David M.
    Whyne, Cari M.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [7] Geomstats: A Python']Python Package for Riemannian Geometry in Machine Learning
    Miolane, Nina
    Guigui, Nicolas
    Le Brigant, Alice
    Mathe, Johan
    Hou, Benjamin
    Thanwerdas, Yann
    Heyder, Stefan
    Peltre, Olivier
    Koep, Niklas
    Zaatiti, Hadi
    Hajri, Hatem
    Cabanes, Yann
    Gerald, Thomas
    Chauchat, Paul
    Shewmake, Christian
    Brooks, Daniel
    Kainz, Bernhard
    Donnat, Claire
    Holmes, Susan
    Pennec, Xavier
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [8] MetaHistoSeg: A Python']Python Framework for Meta Learning in Histopathology Image Segmentation
    Yuan, Zheng
    Esteva, Andre
    Xu, Ran
    [J]. DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 268 - 275
  • [9] Glycowork: A Python']Python package for glycan data science and machine learning
    Thomes, Luc
    Burkholz, Rebekka
    Bojar, Daniel
    [J]. GLYCOBIOLOGY, 2021, 31 (10) : 1240 - 1244
  • [10] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    [J]. SOFTWAREX, 2023, 21