HistoMIL: A Python']Python package for training multiple instance learning models on histopathology slides

被引:3
|
作者
Pan, Shi [1 ]
Secrier, Maria [1 ]
机构
[1] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
AURORA;
D O I
10.1016/j.isci.2023.108073
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hematoxylin and eosin (H&E) stained slides are widely used in disease diagnosis. Remarkable advances in deep learning have made it possible to detect complex molecular patterns in these histopathology slides, suggesting automated approaches could help inform pathologists' decisions. Multiple instance learning (MIL) algorithms have shown promise in this context, outperforming transfer learning (TL) methods for various tasks, but their implementation and usage remains complex. We introduce HistoMIL, a Python package designed to streamline the implementation, training and inference process of MIL-based algorithms for computational pathologists and biomedical researchers. It integrates a self-supervised learning module for feature encoding, and a full pipeline encompassing TL and three MIL algorithms: ABMIL, DSMIL, and TransMIL. The PyTorch Lightning framework enables effortless customization and algorithm implementation. We illustrate HistoMIL's capabilities by building predictive models for 2,487 cancer hallmark genes on breast cancer histology slides, achieving AUROC performances of up to 85%.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Geomstats: A python package for riemannian geometry in machine learning
    Miolane, Nina
    Guigui, Nicolas
    Le Brigant, Alice
    Mathe, Johan
    Hou, Benjamin
    Thanwerdas, Yann
    Heyder, Stefan
    Peltre, Olivier
    Koep, Niklas
    Zaatiti, Hadi
    Hajri, Hatem
    Cabanes, Yann
    Gerald, Thomas
    Chauchat, Paul
    Shewmake, Christian
    Brooks, Daniel
    Kainz, Bernhard
    Donnat, Claire
    Holmes, Susan
    Pennec, Xavier
    [J]. 2020, Microtome Publishing (21)
  • [32] Latte: Cross-framework Python']Python package for evaluation of latent-based generative models
    Watcharasupat, Karn N.
    Lee, Junyoung
    Lerch, Alexander
    [J]. SOFTWARE IMPACTS, 2022, 11
  • [33] APLUS: A Python']Python library for usefulness simulations of machine learning models in healthcare
    Wornow, Michael
    Ross, Elsie Gyang
    Callahan, Alison
    Shah, Nigam H.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 139
  • [34] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [35] jmcm: a Python']Python package for analyzing longitudinal data using joint mean-covariance models
    Yang, Xuerui
    Pan, Jianxin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (11) : 5446 - 5461
  • [36] Deep learning models in Python']Python for predicting hydrogen production: A comparative study
    Devasahayam, Sheila
    [J]. ENERGY, 2023, 280
  • [37] SMUTHI: A python']python package for the simulation of light scattering by multiple particles near or between planar interfaces
    Egel, Amos
    Czajkowski, Krzysztof M.
    Theobald, Dominik
    Ladutenko, Konstantin
    Kuznetsov, Alexey S.
    Pattelli, Lorenzo
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 273
  • [38] pyCOFBuilder: A Python']Python Package for Automated Creation of Covalent Organic Framework Models Based on the Reticular Approach
    Oliveira, Felipe L.
    Esteves, Pierre M.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (08) : 3278 - 3289
  • [39] NLMpy: a PYTHON']PYTHON software package for the creation of neutral landscape models within a general numerical framework
    Etherington, Thomas R.
    Holland, E. Penelope
    O'Sullivan, David
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02): : 164 - 168
  • [40] The DynaSig-ML Python']Python package: automated learning of biomolecular dynamics-function relationships
    Mailhot, Olivier
    Major, Francois
    Najmanovich, Rafael
    [J]. BIOINFORMATICS, 2023, 39 (04)