Advances and Applications of Oxidized van der Waals Transition Metal Dichalcogenides

被引:0
|
作者
Kim, Brian S. Y. [1 ,2 ]
Ngo, Tien Dat [3 ]
Hassan, Yasir [4 ]
Chae, Sang Hoon [5 ,6 ]
Yoon, Soon-Gil [4 ]
Choi, Min Sup [4 ]
机构
[1] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[3] Imec, Remisebosweg 1, B-3000 Leuven, Belgium
[4] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejeon 34134, South Korea
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[6] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
2D materials; surface oxidation; transition metal dichalcogenides; van der Waals heterostructures; ATOMIC LAYER DEPOSITION; OPTICAL-PROPERTIES; MULTILAYER MOS2; 2D WSE2; OXIDATION; MONOLAYER; DEFECT; AIR; PHOTOLUMINESCENCE; SEMICONDUCTORS;
D O I
10.1002/advs.202407175
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The surface oxidation of 2D transition metal dichalcogenides (TMDs) has recently gained tremendous technological and fundamental interest owing to the multi-functional properties that the surface oxidized layer opens up. In particular, when integrated into other 2D materials in the form of van der Waals heterostructures, oxidized TMDs enable designer properties, including novel electronic states, engineered light-matter interactions, and exceptional-point singularities, among many others. Here, the evolving landscapes of the state-of-the-art surface engineering technologies that enable controlled oxidation of TMDs down to the monolayer-by-monolayer limit are reviewed. Next, the use of oxidized TMDs in van der Waals heterostructures for different electronic and photonic device platforms, materials growth processes, engineering concepts, and synthesizing new condensed matter phenomena is discussed. Finally, challenges and outlook for future impact of oxidized TMDs in driving rapid advancements across various application fronts is discussed. This review covers recent progress in oxidized 2D transition metal dichalcogenides and their integration into other 2D materials in the form of van der Waals heterostructures. This review focuses on the new designer properties and functionalities that emerge through this integration, along with a critical outlook on promising next steps that will guide the focus and help advance the field. image
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Multi-Controllability of Ambipolar Photoconductivity in Transition Metal Dichalcogenides Van der Waals Heterostructures
    Elbanna, Ahmed
    Wang, Zeng
    Liu, Yuanda
    Wu, Qing Yang Steve
    Liang, Xinan
    Liu, Hongfei
    Ooi, Zi En
    Jiang, Mengting
    Deng, Jie
    Sun, Handong
    Pan, Jisheng
    Shen, Ze Xiang
    Teng, Jinghua
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [22] Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface
    Park, Jun Hong
    Sanne, Atresh
    Guo, Yuzheng
    Amani, Matin
    Zhang, Kehao
    Movva, Hema C. P.
    Robinson, Joshua A.
    Javey, Ali
    Robertson, John
    Banerjee, Sanjay K.
    Kummel, Andrew C.
    SCIENCE ADVANCES, 2017, 3 (10):
  • [23] Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures
    Dong, Xi-Ying
    Li, Run-Ze
    Deng, Jia-Pei
    Wang, Zi-Wu
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 134 : 1 - 4
  • [24] Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions
    Ruichun Luo
    Wen Wu Xu
    Yongzheng Zhang
    Ziqian Wang
    Xiaodong Wang
    Yi Gao
    Pan Liu
    Mingwei Chen
    Nature Communications, 11
  • [25] Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides
    Cui, Zhen
    Ren, Kai
    Zhao, Yiming
    Wang, Xia
    Shu, Huabing
    Yu, Jin
    Tang, Wencheng
    Sun, Minglei
    APPLIED SURFACE SCIENCE, 2019, 492 : 513 - 519
  • [26] Compositional engineering of interfacial charge transfer in van der Waals heterostructures of graphene and transition metal dichalcogenides
    Wen, Guanzhao
    Fu, Shuai
    Bonn, Mischa
    Wang, Hai I.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [27] van der Waals heterostructure for photocatalysis: Graphitic carbon nitride and Janus transition-metal dichalcogenides
    Arra, Srilatha
    Barbar, Rohit
    Kabir, Mukul
    PHYSICAL REVIEW MATERIALS, 2019, 3 (09):
  • [28] Thickness-dependent bandgap of transition metal dichalcogenides dominated by interlayer van der Waals interaction
    Yao, Xue
    Wang, Yaru
    Lang, Xingyou
    Zhu, Yongfu
    Jiang, Qing
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 109 : 11 - 16
  • [29] Van der Waals Epitaxial Growth of Transition Metal Dichalcogenides on Pristine and N-Doped Graphene
    Saidi, Wissam A.
    CRYSTAL GROWTH & DESIGN, 2014, 14 (10) : 4920 - 4928
  • [30] Longitudinal optical conductivity of graphene in van der Waals heterostructures composed of graphene and transition metal dichalcogenides
    Cui, Ruoyang
    Li, Yaojin
    PHYSICS LETTERS A, 2024, 495