Correction of microwave pulse reflection by digital filters in superconducting quantum circuits

被引:0
|
作者
Guo, Liang-Liang [1 ,2 ]
Duan, Peng [1 ,2 ]
Du, Lei [1 ,2 ]
Zhang, Hai-Feng [1 ,2 ]
Tao, Hao-Ran [1 ,2 ]
Chen, Yong [1 ,2 ]
Yang, Xiao-Yan [1 ,2 ]
Zhang, Chi [3 ]
Jia, Zhi-Long [3 ]
Kong, Wei-Cheng [3 ]
Chen, Zhao-Yun [4 ]
Guo, Guo-Ping [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Peoples R China
[3] Origin Quantum Comp Co Ltd, Hefei 230088, Peoples R China
[4] Inst Artificial Intelligence, Hefei Comprehens Natl Sci Ctr, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection cancelation; digital filter; single-qubit gate; superconducting circuit; ERROR; GATE;
D O I
10.1088/1674-1056/ad5d98
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reducing the control error is vital for high-fidelity digital and analog quantum operations. In superconducting circuits, one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain. Here, we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line. We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters, which enables real-time reflection correction when integrated into the field-programmable gate array (FPGA). We achieve a reduction of single-qubit gate infidelity from 0.67% to 0.11% after eliminating microwave reflection. Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Quantum electrodynamics in superconducting circuits
    Ralph, JF
    Whiteman, R
    Diggins, J
    Prance, RJ
    Clark, TD
    Prance, H
    Spiller, TP
    Widom, A
    ELECTRON THEORY AND QUANTUM ELECTRODYNAMICS: 100 YEARS LATER, 1997, 358 : 83 - 92
  • [42] Quantum measurements with superconducting circuits
    Quantum Measurement and Control Laboratory, Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai
    400 005, India
    Curr. Sci., 11 (2069-2076):
  • [43] High temperature superconducting microwave filters
    Sarkar, BK
    Usha, P
    IETE TECHNICAL REVIEW, 1999, 16 (02): : 169 - 175
  • [44] Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits
    Sabegh, Z. Amini
    Vafafard, A.
    Maleki, M. A.
    Mahmoudi, M.
    LASER PHYSICS LETTERS, 2015, 12 (08)
  • [45] High temperature superconducting microwave filters
    Sarkar, B.K.
    Usha, P.
    IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 16 (02): : 169 - 175
  • [46] Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
    Lamata, Lucas
    SCIENTIFIC REPORTS, 2017, 7
  • [47] Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
    Lucas Lamata
    Scientific Reports, 7
  • [48] Splitting circuits for a single-flux-quantum-pulse driver based on a superconducting quantum interference filter
    Kornev, V. K.
    Soloviev, I. I.
    Klenov, N. V.
    Mukhanov, O. A.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (05): : S390 - S393
  • [49] Quantum thermodynamics for quantum computing: Superconducting circuits
    Blok, Machiel S.
    Landi, Gabriel T.
    NATURE PHYSICS, 2025, 21 (02) : 187 - 188
  • [50] Errors of quantum gates in superconducting quantum circuits
    Song, ZiXuan
    Luo, Kai
    Xiang, Liang
    Cui, JiangYu
    Guo, QiuJiang
    Yung, ManHong
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2025, 55 (04)