Correction of microwave pulse reflection by digital filters in superconducting quantum circuits

被引:0
|
作者
Guo, Liang-Liang [1 ,2 ]
Duan, Peng [1 ,2 ]
Du, Lei [1 ,2 ]
Zhang, Hai-Feng [1 ,2 ]
Tao, Hao-Ran [1 ,2 ]
Chen, Yong [1 ,2 ]
Yang, Xiao-Yan [1 ,2 ]
Zhang, Chi [3 ]
Jia, Zhi-Long [3 ]
Kong, Wei-Cheng [3 ]
Chen, Zhao-Yun [4 ]
Guo, Guo-Ping [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Peoples R China
[3] Origin Quantum Comp Co Ltd, Hefei 230088, Peoples R China
[4] Inst Artificial Intelligence, Hefei Comprehens Natl Sci Ctr, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
reflection cancelation; digital filter; single-qubit gate; superconducting circuit; ERROR; GATE;
D O I
10.1088/1674-1056/ad5d98
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reducing the control error is vital for high-fidelity digital and analog quantum operations. In superconducting circuits, one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain. Here, we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line. We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters, which enables real-time reflection correction when integrated into the field-programmable gate array (FPGA). We achieve a reduction of single-qubit gate infidelity from 0.67% to 0.11% after eliminating microwave reflection. Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Quantum measurements with superconducting circuits
    Roy, Tanay
    Vadiraj, A. M.
    Chand, Madhavi
    Ranadive, A.
    Kundu, Suman
    Patankar, Meghan P.
    Vijay, R.
    CURRENT SCIENCE, 2015, 109 (11): : 2069 - 2076
  • [32] Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits
    Kapit, Eliot
    PHYSICAL REVIEW LETTERS, 2016, 116 (15)
  • [33] Superconducting circuits for quantum computing
    2000, Hewlett Packard Laboratories
  • [34] Materials in superconducting quantum circuits
    Xiong, Kanglin
    Feng, Jiagui
    Zheng, Yarui
    Cui, Jiangyu
    Yung, Manhong
    Zhang, Shengyu
    Li, Shunfeng
    Yang, Hui
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (02): : 143 - 162
  • [35] Quantum Computing with Superconducting Circuits
    Schoelkopf, Robert
    2016 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC), 2016, : 43 - 44
  • [36] Quantum optics in superconducting circuits
    Sanders, Barry C.
    FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398
  • [37] Quantum Memristors with Superconducting Circuits
    J. Salmilehto
    F. Deppe
    M. Di Ventra
    M. Sanz
    E. Solano
    Scientific Reports, 7
  • [38] Quantum Memristors with Superconducting Circuits
    Salmilehto, J.
    Deppe, F.
    Di Ventra, M.
    Sanz, M.
    Solano, E.
    SCIENTIFIC REPORTS, 2017, 7
  • [39] Superconducting circuits for quantum computation
    Jaroszynski, Leszek
    PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (05): : 170 - 173
  • [40] Superconducting circuits and quantum information
    You, JQ
    Nori, F
    PHYSICS TODAY, 2005, 58 (11) : 42 - 47