Visualization of explainable artificial intelligence for GeoAI

被引:0
|
作者
Roussel, Cedric [1 ]
机构
[1] Mainz Univ Appl Sci, Inst Spatial Informat & Surveying Technol, I3mainz, Mainz, Germany
来源
关键词
machine learning; explainable AI; Shapley values; visualization; geospatial data;
D O I
10.3389/fcomp.2024.1414923
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shapley additive explanations are a widely used technique for explaining machine learning models. They can be applied to basically any type of model and provide both global and local explanations. While there are different plots available to visualize Shapley values, there is a lack of suitable visualization for geospatial use cases, resulting in the loss of the geospatial context in traditional plots. This study presents a concept for visualizing Shapley values in geospatial use cases and demonstrate its feasibility through an exemplary use case-predicting bike activity in a rental bike system. The visualizations show that visualizing Shapley values on geographic maps can provide valuable insights that are not visible in traditional plots for Shapley additive explanations. Geovisualizations are recommended for explaining machine learning models in geospatial applications or for extracting knowledge about real-world applications. Suitable visualizations for the considered use case are a proportional symbol map and a mapping of computed Voronoi values to the street network.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] From Explainable to Reliable Artificial Intelligence
    Narteni, Sara
    Ferretti, Melissa
    Orani, Vanessa
    Vaccari, Ivan
    Cambiaso, Enrico
    Mongelli, Maurizio
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 255 - 273
  • [32] Explainable artificial intelligence in orthopedic surgery
    Oettl, Felix C.
    Oeding, Jacob F.
    Samuelsson, Kristian
    JOURNAL OF EXPERIMENTAL ORTHOPAEDICS, 2024, 11 (03)
  • [33] Explainable Artificial Intelligence for Simulation Models
    Grigoryan, Gayane
    PROCEEDINGS OF THE 38TH ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACM SIGSIM-PADS 2024, 2024, : 59 - 60
  • [34] Audio Explainable Artificial Intelligence: A Review
    Akman, Alican
    Schuller, Björn W.
    Intelligent Computing, 2024, 3
  • [35] A review of Explainable Artificial Intelligence in healthcare
    Sadeghi, Zahra
    Alizadehsani, Roohallah
    Cifci, Mehmet Akif
    Kausar, Samina
    Rehman, Rizwan
    Mahanta, Priyakshi
    Bora, Pranjal Kumar
    Almasri, Ammar
    Alkhawaldeh, Rami S.
    Hussain, Sadiq
    Alatas, Bilal
    Shoeibi, Afshin
    Moosaei, Hossein
    Hladik, Milan
    Nahavandi, Saeid
    Pardalos, Panos M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [36] XAI-Explainable artificial intelligence
    Gunning, David
    Stefik, Mark
    Choi, Jaesik
    Miller, Timothy
    Stumpf, Simone
    Yang, Guang-Zhong
    SCIENCE ROBOTICS, 2019, 4 (37)
  • [37] Scientific Exploration and Explainable Artificial Intelligence
    Zednik, Carlos
    Boelsen, Hannes
    MINDS AND MACHINES, 2022, 32 (01) : 219 - 239
  • [38] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [39] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [40] Is explainable artificial intelligence intrinsically valuable?
    Nathan Colaner
    AI & SOCIETY, 2022, 37 : 231 - 238