Physics-informed tracking of qubit fluctuations

被引:0
|
作者
Berritta, Fabrizio [1 ]
Krzywda, Jan A. [2 ,3 ]
Benestad, Jacob [4 ]
van der Heijden, Joost [5 ]
Fedele, Federico [1 ,6 ]
Fallahi, Saeed [7 ,8 ]
Gardner, Geoffrey C. [8 ]
Manfra, Michael J. [7 ,8 ,9 ,10 ]
van Nieuwenburg, Evert [2 ,3 ]
Danon, Jeroen [4 ]
Chatterjee, Anasua [1 ]
Kuemmeth, Ferdinand [1 ,5 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Leiden Univ, Leiden Inst Adv Comp Sci, POB 9506, NL-2300 RA Leiden, Netherlands
[4] Norwegian Univ Sci & Technol, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
[5] QDevil, Quantum Machines, DK-2750 Ballerup, Denmark
[6] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[7] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[8] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[9] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[10] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 01期
关键词
Probes;
D O I
10.1103/PhysRevApplied.22.014033
中图分类号
O59 [应用物理学];
学科分类号
摘要
Environmental fluctuations degrade the performance of solid-state qubits but can in principle be mitigated by real-time Hamiltonian estimation down to timescales set by the estimation efficiency. We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation, appropriate for describing the effects of nuclear spin diffusion in gallium arsenide. Evaluating and narrowing the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time conditioned on the previous measurement outcomes, thereby further increasing the estimation efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    Computer Methods in Applied Mechanics and Engineering, 2025, 434
  • [2] TROPHY: A Topologically Robust Physics-Informed Tracking Framework for Tropical Cyclones
    Yan, Lin
    Guo, Hanqi
    Peterka, Thomas
    Wang, Bei
    Wang, Jiali
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (01) : 1249 - 1259
  • [3] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [4] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [5] Physics-Informed Satellite Cybersecurity
    Calabrese, Matteo
    Falco, Gregory
    COMPUTER, 2024, 57 (05) : 106 - 109
  • [6] Physics-Informed Graph Learning
    Peng, Ciyuan
    Xia, Feng
    Saikrishna, Vidya
    Liu, Huan
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 732 - 739
  • [7] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [8] Towards chemical source tracking and characterization using physics-informed neural networks
    Naderi, Forouzan
    Perez-Raya, Issac
    Yadav, Sangeeta
    Kalajahi, Amin Pashaei
    Bin Mamun, Zayeed
    D'Souza, Roshan M.
    ATMOSPHERIC ENVIRONMENT, 2024, 334
  • [9] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)