A Bayesian framework for discovering interpretable Lagrangian of dynamical systems from data

被引:0
|
作者
Tripura, Tapas [1 ]
Chakraborty, Souvik [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Appl Mech, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Yardi Sch Artificial Intelligence ScAI, Delhi 110016, India
关键词
Lagrangian discovery; Conservation law; Sparse Bayesian learning; Probabilistic machine learning; Explainable machine learning; DESIGN;
D O I
10.1016/j.ymssp.2024.111737
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Learning and predicting the dynamics of physical systems requires a profound understanding of the underlying physical laws. Recent works on learning physical laws involve the extension of the equation discovery frameworks to the discovery of Hamiltonian and Lagrangian of physical systems. While the existing methods parameterize the Lagrangian using neural networks, we propose an alternate framework for learning interpretable Lagrangian descriptions of physical systems from limited data using the sparse Bayesian approach. Unlike existing neural network- based approaches, the proposed approach (a) yields an interpretable description of Lagrangian, (b) exploits Bayesian learning to quantify the epistemic uncertainty due to limited data, (c) automates the distillation of Hamiltonian from the learned Lagrangian using Legendre transformation, and (d) provides ordinary (ODE) and partial differential equation (PDE) based descriptions of the observed systems. Six different examples involving both discrete and continuous systems illustrate the efficacy of the proposed approach.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A data-driven framework for learning hybrid dynamical systems
    Li, Yang
    Xu, Shengyuan
    Duan, Jinqiao
    Huang, Yong
    Liu, Xianbin
    [J]. CHAOS, 2023, 33 (06)
  • [32] Discovering sparse interpretable dynamics from partial observations
    Peter Y. Lu
    Joan Ariño Bernad
    Marin Soljačić
    [J]. Communications Physics, 5
  • [33] Discovering transcriptional modules by Bayesian data integration
    Savage, Richard S.
    Ghahramani, Zoubin
    Griffin, Jim E.
    de la Cruz, Bernard J.
    Wild, David L.
    [J]. BIOINFORMATICS, 2010, 26 (12) : i158 - i167
  • [34] Discovering sparse interpretable dynamics from partial observations
    Lu, Peter Y.
    Bernad, Joan Arino
    Soljacic, Marin
    [J]. COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [35] Dynamical independence: Discovering emergent macroscopic processes in complex dynamical systems
    Barnett, L.
    Seth, A.K.
    [J]. Physical Review E, 2023, 108 (01):
  • [36] Gyroscopic coupling in holonomic Lagrangian dynamical systems
    Mukherjee, R
    Rosenberg, RC
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (02): : 552 - 556
  • [37] Contact constraints and dynamical equations in Lagrangian systems
    Zhen Zhao
    Caishan Liu
    [J]. Multibody System Dynamics, 2016, 38 : 77 - 99
  • [38] Dynamical behavior of Lagrangian systems on Finsler manifolds
    DiBari, M
    Boccaletti, D
    Cipriani, P
    Pucacco, G
    [J]. PHYSICAL REVIEW E, 1997, 55 (06) : 6448 - 6458
  • [39] GENERALIZATION OF QUASI LAGRANGIAN DYNAMICAL-SYSTEMS
    MEFFROY, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (10): : 795 - 798
  • [40] Λ-symmetries of dynamical systems, Hamiltonian and Lagrangian equations
    Cicogna, Giampaolo
    [J]. GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 47 - 60