A Bayesian framework for discovering interpretable Lagrangian of dynamical systems from data

被引:0
|
作者
Tripura, Tapas [1 ]
Chakraborty, Souvik [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Appl Mech, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Yardi Sch Artificial Intelligence ScAI, Delhi 110016, India
关键词
Lagrangian discovery; Conservation law; Sparse Bayesian learning; Probabilistic machine learning; Explainable machine learning; DESIGN;
D O I
10.1016/j.ymssp.2024.111737
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Learning and predicting the dynamics of physical systems requires a profound understanding of the underlying physical laws. Recent works on learning physical laws involve the extension of the equation discovery frameworks to the discovery of Hamiltonian and Lagrangian of physical systems. While the existing methods parameterize the Lagrangian using neural networks, we propose an alternate framework for learning interpretable Lagrangian descriptions of physical systems from limited data using the sparse Bayesian approach. Unlike existing neural network- based approaches, the proposed approach (a) yields an interpretable description of Lagrangian, (b) exploits Bayesian learning to quantify the epistemic uncertainty due to limited data, (c) automates the distillation of Hamiltonian from the learned Lagrangian using Legendre transformation, and (d) provides ordinary (ODE) and partial differential equation (PDE) based descriptions of the observed systems. Six different examples involving both discrete and continuous systems illustrate the efficacy of the proposed approach.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A partial Lagrangian method for dynamical systems
    R. Naz
    F. M. Mahomed
    A. Chaudhry
    [J]. Nonlinear Dynamics, 2016, 84 : 1783 - 1794
  • [22] A partial Lagrangian method for dynamical systems
    Naz, R.
    Mahomed, F. M.
    Chaudhry, A.
    [J]. NONLINEAR DYNAMICS, 2016, 84 (03) : 1783 - 1794
  • [23] Fields associated to Lagrangian dynamical systems
    Obadeanu, V.
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (02): : 107 - 115
  • [24] Discovering significant and interpretable patterns from multifactorial DNA microarray data with poor replication
    Kim, JH
    Jeoung, D
    Lee, S
    Kim, H
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2004, 37 (04) : 260 - 268
  • [25] A Bayesian approach to Lagrangian data assimilation
    Apte, A.
    Jones, C. K. R. T.
    Stuart, A. M.
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (02) : 336 - 347
  • [26] Functional Bayesian networks for discovering causality from multivariate functional data
    Zhou, Fangting
    He, Kejun
    Wang, Kunbo
    Xu, Yanxun
    Ni, Yang
    [J]. BIOMETRICS, 2023, 79 (04) : 3279 - 3293
  • [27] Bayesian inference for dynamical systems
    Roda, Weston C.
    [J]. INFECTIOUS DISEASE MODELLING, 2020, 5 : 221 - 232
  • [28] A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration
    Zhao, Bo
    Rubinstein, Benjamin I. P.
    Gemmell, Jim
    Han, Jiawei
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (06): : 550 - 561
  • [29] Discovering independent parameters in complex dynamical systems
    Lainscsek, Claudia
    Weyhenmeyer, Jonathan
    Sejnowski, Terrence J.
    Letellier, Christophe
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 76 : 182 - 189
  • [30] Bayesian evolutionary hypernetworks for interpretable learning from high-dimensional data
    Kim, Soo-Jin
    Ha, Jung-Woo
    Kim, Heebal
    Zhang, Byoung-Tak
    [J]. APPLIED SOFT COMPUTING, 2019, 81