Optimized continuous dynamical decoupling via differential geometry and machine learning

被引:0
|
作者
da Costa Morazotti, Nicolas Andre
da Silva, Adonai Hilario [1 ]
Audi, Gabriel [1 ]
Fanchini, Felipe Fernandes [2 ,3 ]
de Jesus Napolitano, Reginaldo [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Sch Sci, BR-17033360 Bauru, SP, Brazil
[3] QuaTI Quantum Technol & Informat, BR-13560161 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
SINGLE-QUBIT; COHERENCE; FIDELITY;
D O I
10.1103/PhysRevA.110.042601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a strategy to develop optimally designed fields for continuous dynamical decoupling. Using our methodology, we obtain the optimal continuous field configuration to maximize the fidelity of a general one-qubit quantum gate. To achieve this, considering dephasing-noise perturbations, we employ an auxiliary qubit instead of the boson bath to implement a purification scheme, which results in unitary dynamics. Employing the sub-Riemannian geometry framework for the two-qubit unitary group, we derive and numerically solve the geodesic equations, obtaining the optimal time-dependent control Hamiltonian. Also, due to the extended time required to find solutions to the geodesic equations, we train a neural network on a subset of geodesic solutions, enabling us to promptly generate the time-dependent control Hamiltonian for any desired gate, which is crucial in circuit optimization.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] A Continuous Time Dynamical Turing Machine
    Postlethwaite, Claire M.
    Ashwin, Peter
    Egbert, Matthew
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 13
  • [32] Protecting operations on qudits from noise by continuous dynamical decoupling
    Napolitano, Reginaldo de Jesus
    Fanchini, Felipe Fernandes
    da Silva, Adonai Hilario
    Bellomo, Bruno
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [33] Bearing Fault Diagnosis Based on Extreme Machine Learning Optimized by Differential Evolution
    Hu, Yongtao
    Gao Jinfeng
    Zhou, Qiang
    Chen, Xiaoyu
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [34] Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine
    Zhou, Zhiyu
    Wang, Chao
    Gao, Xu
    Zhu, Zefei
    Hui, Xudong
    Zheng, Xiao
    Jiang, Likai
    FIBRES & TEXTILES IN EASTERN EUROPE, 2019, 27 (01) : 67 - 77
  • [35] Enhanced measurement precision with continuous interrogation during dynamical decoupling
    Zhang, Jun
    Du, Peng
    Jing, Lei
    Xu, Peng
    You, Li
    Zhang, Wenxin
    CHINESE PHYSICS B, 2024, 33 (03)
  • [36] Estimation of the Laser Frequency Noise Spectrum by Continuous Dynamical Decoupling
    Zhang, Manchao
    Xie, Yi
    Zhang, Jie
    Wang, Weichen
    Wu, Chunwang
    Chen, Ting
    Wu, Wei
    Chen, Pingxing
    PHYSICAL REVIEW APPLIED, 2021, 15 (01):
  • [37] Continuous dynamical decoupling utilizing time-dependent detuning
    Cohen, I.
    Aharon, N.
    Retzker, A.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [38] Enhanced measurement precision with continuous interrogation during dynamical decoupling
    张军
    杜鹏
    敬雷
    徐鹏
    尤力
    张文献
    Chinese Physics B, 2024, 33 (03) : 108 - 114
  • [39] High Fidelity Quantum Gates via Dynamical Decoupling
    West, Jacob R.
    Lidar, Daniel A.
    Fong, Bryan H.
    Gyure, Mark F.
    PHYSICAL REVIEW LETTERS, 2010, 105 (23)
  • [40] Differential Geometry and Topology With a View to Dynamical Systems
    Blaga, Paul
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (02): : 141 - 141