Optimized continuous dynamical decoupling via differential geometry and machine learning

被引:0
|
作者
da Costa Morazotti, Nicolas Andre
da Silva, Adonai Hilario [1 ]
Audi, Gabriel [1 ]
Fanchini, Felipe Fernandes [2 ,3 ]
de Jesus Napolitano, Reginaldo [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Sch Sci, BR-17033360 Bauru, SP, Brazil
[3] QuaTI Quantum Technol & Informat, BR-13560161 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
SINGLE-QUBIT; COHERENCE; FIDELITY;
D O I
10.1103/PhysRevA.110.042601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a strategy to develop optimally designed fields for continuous dynamical decoupling. Using our methodology, we obtain the optimal continuous field configuration to maximize the fidelity of a general one-qubit quantum gate. To achieve this, considering dephasing-noise perturbations, we employ an auxiliary qubit instead of the boson bath to implement a purification scheme, which results in unitary dynamics. Employing the sub-Riemannian geometry framework for the two-qubit unitary group, we derive and numerically solve the geodesic equations, obtaining the optimal time-dependent control Hamiltonian. Also, due to the extended time required to find solutions to the geodesic equations, we train a neural network on a subset of geodesic solutions, enabling us to promptly generate the time-dependent control Hamiltonian for any desired gate, which is crucial in circuit optimization.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] Robust dynamical decoupling with concatenated continuous driving
    Cai, J-M
    Naydenov, B.
    Pfeiffer, R.
    McGuinness, L. P.
    Jahnke, K. D.
    Jelezko, F.
    Plenio, M. B.
    Retzker, A.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [22] Dynamical simulation via quantum machine learning with provable generalization
    Gibbs, Joe
    Holmes, Zoe
    Caro, Matthias C.
    Ezzell, Nicholas
    Huang, Hsin-Yuan
    Cincio, Lukasz
    Sornborger, Andrew T.
    Coles, Patrick J.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [23] Optimized dynamical decoupling for power-law noise spectra
    Pasini, S.
    Uhrig, G. S.
    PHYSICAL REVIEW A, 2010, 81 (01):
  • [24] Continuous Selection of Optimized Traffic Light Schedules: A Machine Learning Approach
    Baluja, Shumect
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3205 - 3211
  • [25] Quantum control via encoded dynamical decoupling
    Viola, L
    PHYSICAL REVIEW A, 2002, 66 (01) : 10
  • [26] Shielding quantum discord through continuous dynamical decoupling
    Fanchini, Felipe F.
    de Lima, Emanuel F.
    Castelano, Leonardo K.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [27] Decoherence control via quantum dynamical decoupling
    Lidar, Daniel A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [28] Differential design in homogenous sensors for classification and decoupling kinesthetic information through machine learning
    Zhou, Yuanzhi
    Xu, Weiliang
    Ji, Yongsheng
    Zhou, Guoyuan
    Wu, Wenfeng
    Chen, Zibin
    Wang, Beibei
    Gui, Xuchun
    Li, Xinming
    APPLIED PHYSICS REVIEWS, 2023, 10 (02)
  • [29] Numerical Mesh Truncation Boundary Conditions Optimized via Machine Learning
    Ozdemir, Tayfun
    Aloi, Daniel N.
    Bi, Kevin
    Burkholder, Robert J.
    2019 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2019,
  • [30] Optimized dynamical decoupling sequences in protecting two-qubit states
    Pan, Yu
    Xi, Zai-Rong
    Gong, Jiangbin
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (17)