Optimized continuous dynamical decoupling via differential geometry and machine learning

被引:0
|
作者
da Costa Morazotti, Nicolas Andre
da Silva, Adonai Hilario [1 ]
Audi, Gabriel [1 ]
Fanchini, Felipe Fernandes [2 ,3 ]
de Jesus Napolitano, Reginaldo [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Sch Sci, BR-17033360 Bauru, SP, Brazil
[3] QuaTI Quantum Technol & Informat, BR-13560161 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
SINGLE-QUBIT; COHERENCE; FIDELITY;
D O I
10.1103/PhysRevA.110.042601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a strategy to develop optimally designed fields for continuous dynamical decoupling. Using our methodology, we obtain the optimal continuous field configuration to maximize the fidelity of a general one-qubit quantum gate. To achieve this, considering dephasing-noise perturbations, we employ an auxiliary qubit instead of the boson bath to implement a purification scheme, which results in unitary dynamics. Employing the sub-Riemannian geometry framework for the two-qubit unitary group, we derive and numerically solve the geodesic equations, obtaining the optimal time-dependent control Hamiltonian. Also, due to the extended time required to find solutions to the geodesic equations, we train a neural network on a subset of geodesic solutions, enabling us to promptly generate the time-dependent control Hamiltonian for any desired gate, which is crucial in circuit optimization.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Optimizing continuous dynamical decoupling with machine learning
    Cai, Miao
    Xia, Keyu
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [2] Optimized dynamical decoupling via genetic algorithms
    Quiroz, Gregory
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [3] Developing Learning Algorithms via Optimized Discretization of Continuous Dynamical Systems
    Tao, Qing
    Sun, Zhengya
    Kong, Kang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 140 - 149
  • [4] Synthetic clock transitions via continuous dynamical decoupling
    Trypogeorgos, D.
    Valdes-Curiel, A.
    Lundblad, N.
    Spielman, I. B.
    [J]. PHYSICAL REVIEW A, 2018, 97 (01)
  • [5] Learning noise via dynamical decoupling of entangled qubits
    McCourt, Trevor
    Neill, Charles
    Lee, Kenny
    Quintana, Chris
    Chen, Yu
    Kelly, Julian
    Marshall, Jeffrey
    Smelyanskiy, V. N.
    Dykman, M. I.
    Korotkov, Alexander
    Chuang, Isaac L.
    Petukhov, A. G.
    [J]. PHYSICAL REVIEW A, 2023, 107 (05)
  • [6] Protecting and enhancing spin squeezing via continuous dynamical decoupling
    Chaudhry, Adam Zaman
    Gong, Jiangbin
    [J]. PHYSICAL REVIEW A, 2012, 86 (01)
  • [7] Machine-Learning Optimized Measurements of Chaotic Dynamical Systems via the Information Bottleneck
    Murphy, Kieran A.
    Bassett, Dani S.
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (19)
  • [8] Continuous dynamical decoupling magnetometry
    Hirose, Masashi
    Aiello, Clarice D.
    Cappellaro, Paola
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [9] A Proposal on Machine Learning via Dynamical Systems
    Weinan, E.
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2017, 5 (01) : 1 - 11
  • [10] A Proposal on Machine Learning via Dynamical Systems
    Weinan E
    [J]. Communications in Mathematics and Statistics, 2017, 5 : 1 - 11