On the well-posedness of some model arising in the mathematical biology

被引:0
|
作者
Efendiev, Messoud [1 ,2 ]
Vougalter, Vitali [3 ]
机构
[1] Helmholtz Zent Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integro-differential equations; Sobolev spaces; well-posedness; ANOMALOUS DIFFUSION; TRAVELING-WAVES;
D O I
10.1002/mma.10507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish the global well-posedness in W-1,W-2,W-2(R x R+) of the integro-differential equation in the case of anomalous diffusion when the one-dimensional negative Laplace operator is raised to a fractional power in the presence of the transport term. The model is relevant to the cell population dynamics in the mathematical biology. Our proof relies on a fixed point technique.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology
    Alf Gerisch
    Matthias Kotschote
    Rico Zacher
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 593 - 624
  • [2] Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology
    Gerisch, Alf
    Kotschote, Matthias
    Zacher, Rico
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6): : 593 - 624
  • [3] Well-posedness of a mathematical model of diabetic atherosclerosis
    Xie, Xuming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [4] WELL-POSEDNESS OF A MATHEMATICAL MODEL FOR ALZHEIMER'S DISEASE
    Bertsch, Michiel
    Franchi, Bruno
    Tesi, Maria Carla
    Tosin, Andrea
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 2362 - 2388
  • [5] On the well-posedness of a mathematical model for lithium-ion batteries
    Manuel Ramos, Angel
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (01) : 115 - 125
  • [6] On the well-posedness of mathematical models formulticomponent biofilms
    Sonner, Stefanie
    Efendiev, Messoud A.
    Eberl, Hermann J.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3753 - 3775
  • [7] On the well-posedness of a multiscale mathematical model for Lithium-ion batteries
    Ildefonso Diaz, J.
    Gomez-Castro, David
    Ramos, Angel M.
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 1132 - 1157
  • [8] On the well-posedness of a mathematical model describing water-mud interaction
    Escher, Joachim
    Matioc, Anca-Voichita
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1388 - 1398
  • [9] ON THE WELL-POSEDNESS OF A MATHEMATICAL MODEL FOR LITHIUM-ION BATTERY SYSTEMS
    Wu, Jinbiao
    Xu, Jinchao
    Zou, Henghui
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (03) : 275 - 297
  • [10] Mathematical analysis of fluids in motion: from well-posedness to model reduction
    Eduard Feireisl
    [J]. Revista Matemática Complutense, 2013, 26 : 299 - 340