Identifying who are unlikely to benefit from total knee arthroplasty using machine learning models

被引:0
|
作者
Liu, Xiaodi [1 ]
Liu, Yingnan [1 ,2 ]
Lee, Mong Li [1 ,2 ]
Hsu, Wynne [1 ,2 ]
Liow, Ming Han Lincoln [3 ]
机构
[1] Natl Univ Singapore, Inst Data Sci, Singapore, Singapore
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[3] Singapore Gen Hosp, Dept Orthopaed Surg, Singapore, Singapore
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
关键词
CLINICALLY IMPORTANT DIFFERENCES; OSTEOARTHRITIS; PAIN; SATISFACTION; IMPROVE; SF-36; SCORE; HIP;
D O I
10.1038/s41746-024-01265-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Identifying and preventing patients who are not likely to benefit long-term from total knee arthroplasty (TKA) would decrease healthcare expenditure significantly. We trained machine learning (ML) models (image-only, clinical-data only, and multimodal) among 5720 knee OA patients to predict postoperative dissatisfaction at 2 years. Dissatisfaction was defined as not achieving a minimal clinically important difference in postoperative Knee Society knee and function scores (KSS), Short Form-36 Health Survey [SF-36, divided into a physical component score (PCS) and mental component score (MCS)], and Oxford Knee Score (OKS). Compared to image-only models, both clinical-data only and multimodal models achieved superior performance at predicting dissatisfaction measured by AUC, clinical-data only model: KSS 0.888 (0.866-0.909), SF-PCS 0.836 (0.812-0.860), SF-MCS 0.833 (0.812-0.854), and OKS 0.806 (0.753-0.859); multimodal model: KSS 0.891 (0.870-0.911), SF-PCS 0.832 (0.808-0.857), SF-MCS 0.835 (0.811-0.856), and OKS 0.816 (0.768-0.863). Our findings highlighted that ML models using clinical or multimodal data were capable to predict post-TKA dissatisfaction.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] No benefit of autologous transfusion drains in total knee arthroplasty
    Christoph Schnurr
    Ioannis Giannakopoulos
    Dariusch Arbab
    Jens Dargel
    Johannes Beckmann
    Peer Eysel
    [J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26 : 1557 - 1563
  • [22] No benefit of autologous transfusion drains in total knee arthroplasty
    Schnurr, Christoph
    Giannakopoulos, Ioannis
    Arbab, Dariusch
    Dargel, Jens
    Beckmann, Johannes
    Eysel, Peer
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2018, 26 (05) : 1557 - 1563
  • [23] Machine Learning for Detecting Total Knee Arthroplasty Implant Loosening on Plain Radiographs
    Kim, Man-Soo
    Cho, Ryu-Kyoung
    Yang, Sung-Cheol
    Hur, Jae-Hyeong
    In, Yong
    [J]. BIOENGINEERING-BASEL, 2023, 10 (06):
  • [24] DEVELOPMENT OF THE PROTO-KNEE TOOL USING MACHINE LEARNING ALGORITHMS TO PREDICT CLINICAL OUTCOMES AFTER TOTAL KNEE ARTHROPLASTY
    Zhou, Y.
    Schilling, C.
    Dowsey, M.
    Choong, P.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S84 - S84
  • [25] Machine learning models accurately predict recurrent infection following revision total knee arthroplasty for periprosthetic joint infection
    Christian Klemt
    Samuel Laurencin
    Akachimere Cosmas Uzosike
    Jillian C. Burns
    Timothy G. Costales
    Ingwon Yeo
    Yasamin Habibi
    Young-Min Kwon
    [J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30 : 2582 - 2590
  • [26] Machine learning models accurately predict recurrent infection following revision total knee arthroplasty for periprosthetic joint infection
    Klemt, Christian
    Laurencin, Samuel
    Uzosike, Akachimere Cosmas
    Burns, Jillian C.
    Costales, Timothy G.
    Yeo, Ingwon
    Habibi, Yasamin
    Kwon, Young-Min
    [J]. KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2022, 30 (08) : 2582 - 2590
  • [27] Clinical Benefit of Robotic-Assisted Total Knee Arthroplasty over Conventional Total Knee Arthroplasty When Using Mobile-Bearing Implants
    Han, Sang-Ho
    Lee, Min-Soo
    Kong, Se-Hee
    [J]. MEDICINA-LITHUANIA, 2024, 60 (07):
  • [28] Patients Who Have Kellgren-Lawrence Grade 3 and 4 Osteoarthritis Benefit Equally From Total Knee Arthroplasty
    Goh, Graham S.
    Schwartz, Andrew M.
    Friend, Jennifer K.
    Grace, Trevor R.
    Wickes, C. Baylor
    Bolognesi, Michael P.
    Austin, Matthew S.
    [J]. JOURNAL OF ARTHROPLASTY, 2023, 38 (09): : 1714 - 1717
  • [29] Machine Learning Algorithms Identify Optimal Sagittal Component Position in Total Knee Arthroplasty
    Farooq, Hassan
    Deckard, Evan R.
    Arnold, Nicholas R.
    Meneghini, R. Michael
    [J]. JOURNAL OF ARTHROPLASTY, 2021, 36 (07): : S242 - S249
  • [30] Utilization of machine learning methods for predicting surgical outcomes after total knee arthroplasty
    Mohammed, Hina
    Huang, Yihe
    Memtsoudis, Stavros
    Parks, Michael
    Huang, Yuxiao
    Ma, Yan
    [J]. PLOS ONE, 2022, 17 (03):